Thursday, 20 January 2022

Quantum Mechanics

 

Quantum mechanics

 Quantum mechanics [part-1]

The special theory of relativity is about the interdependence of space-time relation with reference to different frames of reference.1905 Einstein. the speed of light is always constant, independent of the frame of reference. It makes no difference whether a source of light is stationary or in relative motion.

Quantum mechanics deals with very fast-moving and very small objects, the electromagnetic radiation emitted by the Sun, the photons, as Einstein called it; [like the sub-atomic particles]; unlike the classical physics of large bodies and of relatively slow motions.


Rutherfords conclusion:

Rutherford's Alpha particle scattering experiment.

-Alpha particles are charged helium atoms. 

In doing so he discovered the nucleus of the atom.

The phenomenon of light radiation:

By the end of the 19th century, physicists almost universally accepted the wave theory of light. However, though the ideas of classical physics explain interference and diffraction phenomena relating to the propagation of light, they do not account for the absorption and emission of light.

light also behaves as a particle. dual nature of light. the wave-particle duality. some times light behaves as a wave and sometimes as a particle. but not both at the same time. the particle nature of light is called as, photon.

Photon is a massless particle of energy quantum. Similar to rainwater falling drop by drop. and not continuously.

Quantum mechanics originated from German physicist Planck.

The equation for the quantum of energy is given by the relation,

E = hv where h is a constant called Planck's constant. The value is, h =6.6261 × 10-34 Js.


The photoelectric effect:

Einstein explained photo-electric emission using Planck's concept of energy quanta. light quanta. light is a stream of energy particles called photons.

The phenomenon of emission of electrons from the surface of the metal when the light of suitable frequency falls on it is called the photoelectric effect. The current produced due to emitted electrons is called photocurrent. The photoelectric effect proves the quantum nature of radiation. The relation for a quantum of energy, E = hf is called the Planck-Einstein relation.

Threshold energy. work function.  the Planck-Einsein relation,                 E = hf

                                        Kmax =hf - ɸ    Or    Kmax + ɸ   = hf

Bohr explained the hydrogen atom by placing electrons in discrete energy levels of an atom. the energy of an electron is quantized in an orbital. when an electron jumps from a higher energy state to a lower energy state, it emits energy out as electromagnetic radiation of light. the electron's energy levels are discrete. they are quantized. therefore hydrogen atoms have unique spectral lines.


Max Planck

Planck studied at the Universities of Munich and Berlin, where his teachers included Kirchhoff and Helmholtz, and received his doctorate of philosophy at Munich in 1879.

Planck’s earliest work was on the subject of thermodynamics, an interest he acquired from his studies under Kirchhoff, whom he greatly admired. He published papers on entropy, thermoelectricity, and also on the theory of dilute solutions.

The problems of light radiation processes engaged his attention and he showed that these radiations were to be considered, as electromagnetic in nature. Experimental observations on the wavelength distribution of the energy emitted by a black body as a function of temperature were at variance with the predictions of classical physics.

Planck was able to deduce the relationship between the energy and the frequency of radiation. In a paper published in 1900, he announced his derivation of the relationship: this was based on the revolutionary idea that the energy emitted by a resonator could only take on, discrete values or quanta. The energy for a resonator of frequency v is hv where h is a universal constant, now called Planck’s constant. this constant h opened the door for a new theory called quantum mechanics.

This was not only Planck’s most important work but also marked a turning point in the history of physics. The importance of the discovery, with its far-reaching effect on classical physics, was not appreciated at first. However, the evidence for its validity gradually became overwhelming as its application accounted for many discrepancies between observed phenomena and classical theory. Among these applications and developments may be mentioned Einstein’s explanation of the photoelectric effect.

Planck’s work on the quantum theory, as it came to be known, was summarized in two books Thermodynamics (1897) and Theory of heat radiation (1906).


Max Planck and Black-body radiation 

The central assumption behind his new derivation, presented to the DPG on 14 December 1900, was the supposition, now known as the Planck postulate, that electromagnetic energy could be emitted only in quantized form, in other words, the energy could only be a multiple of an elementary unit: 

             E= hv,       where h is Planck's constant,  ( 6.63×10−34 Js), and ν is the frequency of the radiation. Note that the elementary units of energy discussed here are represented by and not simply by ν. Physicists now call these quanta photons, and a photon of frequency ν will have its own specific and unique energy. The total energy at that frequency is then equal to multiplied by the number of photons at that frequency.

Planck and Nernst, seeking to clarify the increasing number of contradictions, organized the First Solvay Conference (Brussels 1911).

In recognition of Planck's fundamental contribution to a new branch of physics, he was awarded the Nobel Prize in Physics for 1918 (he actually received the award in 1919).

 

Albert Einstein

In 1896 Albert Einstein entered the Swiss Federal Polytechnic School in Zurich to be trained as a teacher in physics and mathematics. In 1901, the year he gained his diploma, he acquired Swiss citizenship and, as he was unable to find a teaching post, he accepted a position as technical assistant in the Swiss Patent Office. In 1905 he obtained his doctor’s degree.

The photoelectric effect is a phenomenon where electrons are emitted from the metal surface when the light of sufficient frequency is incident upon. The concept of the photoelectric effect was first documented in 1887 by Heinrich Hertz and later by Lenard in 1902. But both the observations of the photoelectric effect could not be explained by Maxwell’s electromagnetic wave theory of light. Hertz (who had proved the wave theory) himself did not pursue the matter as he felt sure that it could be explained by the wave theory.

Einstein resolved this problem using Planck’s revolutionary idea that light behaves as a particle. The energy carried by each particle of light (called quanta or photon) is dependent on the light’s frequency (ν) as   E = hν

Where h = Planck’s constant = 6.6261 × 10-34 Js.

Light, Einstein said, is a beam of particles whose energies are related to their frequencies according to Planck's formula. When the light beam is directed at a metal, the photons collide with the atoms. If a photon's frequency is sufficient to knock off an electron, the collision produces the photoelectric effect.

Since light is bundled up into photons, Einstein theorized that when a photon falls on the surface of a metal, the entire photon’s energy is transferred to the electron. light is a stream of particles, the photons.

A part of this energy is used to remove the electron from the metal atom’s grasp and the rest is given to the ejected electron as kinetic energy. Electrons emitted from underneath the metal surface lose some kinetic energy during the collision. But the surface electrons carry all the kinetic energy imparted by the photon and have the maximum kinetic energy.

We can write this mathematically as:

The energy of photon = energy required to eject an electron (work function) + Maximum kinetic energy of the electron

E = W + KE

hv = W + KE

KE = hv – w

The thresh hold energy needed to liberate an electron is called work function. this defines the minimum critical frequency needed to liberate photo-electrons.

An increase in the intensity of the same monochromatic light (so long as the intensity is not too high, which is proportional to the number of photons impinging on the surface in a given time), increases the rate at which electrons are ejected—the photoelectric current I—but the kinetic energy of the photoelectrons and the stopping voltage remain the same. For a given metal and frequency of incident radiation, the rate at which photoelectrons are ejected is directly proportional to the intensity of the incident light.

Photoemission from atoms, molecules, and solids

Electrons that are bound in atoms, molecules, and solids each occupy distinct states of well-defined binding energies. When light quanta deliver more than this amount of energy to an individual electron, the electron may be emitted into free space with excess (kinetic) energy that is hv higher than the electron's binding energy. The distribution of kinetic energies thus reflects the distribution of the binding energies of the electrons in the atomic, molecular or crystalline system: an electron emitted from the state at binding energy Eb is found at kinetic energy Ek = hv - Eb. This distribution is one of the main characteristics of the quantum system and can be used for further studies in quantum chemistry and quantum physics.


 The Compton Effect

The Compton effect is the term used for an unusual result observed when X-rays are scattered on some materials. By classical theory, when an electromagnetic wave is scattered off atoms, the wavelength of the scattered radiation is expected to be the same as the wavelength of the incident radiation. Contrary to this prediction of classical physics, observations show that when X-rays are scattered off some materials, such as graphite, the scattered X-rays have different wavelengths from the wavelength of the incident X-rays. This classically unexplainable phenomenon was studied experimentally by Arthur H. Compton and his collaborators, and Compton gave its explanation in 1923.

To explain the shift in wavelengths measured in the experiment, Compton used Einstein’s idea of light as a particle. The Compton effect has a very important place in the history of physics because it shows that electromagnetic radiation cannot be explained as a purely wave phenomenon. The explanation of the Compton effect gave a convincing argument to the physics community that electromagnetic waves can indeed behave like a stream of photons, which placed the concept of a photon on firm ground.

Compton effect is a process in which x-rays collide with electrons and are scattered.

By the early 20th century, research into the interaction of X-rays with the matter was well underway. It was observed that when X-rays of a known wavelength interact with atoms, the X-rays are scattered through an angle θ and emerge at a different wavelength related to θ. The experiments had found that the wavelength of the scattered rays was longer (corresponding to lower energy) than the initial wavelength.

In 1923, Compton published a paper in the Physical Review that explained the X-ray shift by attributing particle-like momentum to light quanta (Einstein had proposed light quanta in 1905 in explaining the photo-electric effect, but Compton did not build on Einstein's work). The energy of light quanta depends only on the frequency of the light. In his paper, Compton derived the mathematical relationship between the shift in wavelength and the scattering angle of the X-rays by assuming that each scattered X-ray photon interacted with only one electron. His paper concludes by reporting on experiments that verified his derived relation: 

                                            λ' - λ = h (1-cosθ) /me c

 

  • In the Compton effect, X-rays scattered off some materials have different wavelengths than the wavelength of the incident X-rays. This phenomenon does not have a classical explanation.
  • The Compton effect is explained by assuming that radiation consists of photons that collide with weakly bound electrons in the target material. Both electron and photon are treated as relativistic particles. Conservation laws of the total energy and of momentum are obeyed in collisions.
  • Treating the photon as a particle with a momentum that can be transferred to an electron leads to a theoretical Compton shift that agrees with the wavelength shift measured in the experiment. This provides evidence that radiation consists of photons.
  • Compton scattering is an inelastic scattering, in which scattered radiation has a longer wavelength than the wavelength of incident radiation.


The de Broglie hypothesis

De Broglie had intended a career in humanities, and received his first degree in history. Afterwards he turned his attention toward mathematics and physics and received a degree in physics. With the outbreak of the First World War in 1914, he offered his services to the army in the development of radio communications.

His 1924 thesis Recherches sur la théorie des quanta (Research on the Theory of the Quanta) introduced his theory of electron waves. This included the wave-particle duality theory of matter, based on the work of Max Planck and Albert Einstein on light. This research culminated in the de Broglie hypothesis stating that any moving particle or object had an associated wave. De Broglie thus created a new field in physics.

Louis Victor de Broglie was a French physicist and aristocrat who made groundbreaking contributions to quantum theory. In his 1924 Ph.D. thesis, he postulated the wave nature of electrons and suggested that all matter has wave properties. This concept is known as the de Broglie hypothesis, an example of wave-particle duality, and forms a central part of the theory of quantum mechanics.

In 1923, Louis de Broglie proposed a hypothesis to explain the theory of the atomic structure. By using a series of substitutions de Broglie hypothesizes particles to hold properties of waves. Within a few years, de Broglie's hypothesis was tested by scientists shooting electrons and rays of lights through slits. What scientists discovered was the electron stream acted the same way as light, proving de Broglie correct.

He gave the relation λ = h/mv, where λ is the wavelength, h is Planck's constant, m is the mass of a particle, moving at a velocity v. de Broglie suggested that particles can exhibit properties of waves.

 where mv = p is the momentum of the particle. The above equation is called de Broglie equation and 'λ' is called the de Broglie wavelength. Thus the significance of the de Broglie equation lies in the fact that it relates the particle character with the wave character of matter.

 Louis de Broglie, in 1924, stated that a wave is associated with a moving particle (i.e. matter) and so named these waves as matter waves. He proposed that just like the light has dual nature, electrons also have wave-like properties.
The wavelength of a moving particle is given by,   λ = h​/p
where h is Planck's constant and p is the momentum of the moving particle.

de Broglie equation states that a matter can act as waves much like light and radiation, which also behave as waves and particles. The equation further explains that a beam of electrons can also be diffracted just like a beam of light. In essence, the de Broglie equation helps us understand the idea of moving particles of matter having a wavelength.

Experimental Confirmation

In 1927, physicists Clinton Davisson and Lester Germer, of Bell Labs, performed an experiment where they fired electrons at a crystalline nickel target. The resulting diffraction pattern matched the predictions of the de Broglie wavelength. De Broglie received the 1929 Nobel Prize for his theory (the first time it was ever awarded for a Ph.D. thesis) and Davisson/Germer jointly won it in 1937 for the experimental discovery of electron diffraction (and thus the proving of de Broglie's hypothesis).

 The DPG held a celebration, during which the Max-Planck medal (founded as the highest medal by the DPG in 1928) was awarded to French physicist Louis de Broglie.

 

Erwin Schrodinger

In the first years of his career Schrödinger became acquainted with the ideas of the old quantum theory, developed in the works of Max Planck, Albert Einstein, Niels Bohr, Arnold Sommerfeld, and others. This knowledge helped him work on some problems in theoretical physics, but the Austrian scientist at the time was not yet ready to part with the traditional methods of classical physics.

In autumn 1922 he analyzed the electron orbits in an atom from a geometric point of view, using methods developed by the mathematician Hermann Weyl (1885–1955). This work, in which it was shown that quantum orbits are associated with certain geometric properties, was an important step in predicting some of the features of wave mechanics.

Earlier in the same year he created the Schrödinger equation of the relativistic Doppler effect for spectral lines, based on the hypothesis of light quanta and considerations of energy and momentum. He liked the idea of his teacher Exner on the statistical nature of the conservation laws, so he enthusiastically embraced the articles of Bohr, Kramers, and Slater, which suggested the possibility of violation of these laws in individual atomic processes (for example, in the process of emission of radiation).

In January 1926, Schrödinger published in Annalen der Physik the paper "Quantisierung als Eigenwertproblem" (Quantization as an Eigenvalue Problem) on wave mechanics and presented what is now known as the Schrödinger equation. In this paper, he gave a "derivation" of the wave equation for time-independent systems and showed that it gave the correct energy eigenvalues for a hydrogen-like atom. This paper has been universally celebrated as one of the most important achievements of the twentieth century and created a revolution in most areas of quantum mechanics and indeed of all physics and chemistry.

A second paper was submitted just four weeks later that solved the quantum harmonic oscillator, rigid rotor, and diatomic molecule problems and gave a new derivation of the Schrödinger equation. A third paper, published in May, showed the equivalence of his approach to that of Heisenberg and gave the treatment of the Stark effect. A fourth paper in this series showed how to treat problems in which the system changes with time, as in scattering problems. In this paper, he introduced a complex solution to the wave equation in order to prevent the occurrence of fourth and sixth-order differential equations. (This was arguably the moment when quantum mechanics switched from real to complex numbers.) When he introduced complex numbers in order to lower the order of the differential equations, something magical happened, and all of wave mechanics was at his feet. (He eventually reduced the order to one.) These papers were his central achievement and were at once recognized as having great significance by the physics community.

Schrödinger was not entirely comfortable with the implications of quantum theory referring to his theory as “wave mechanics.” He wrote about the probability interpretation of quantum mechanics, saying: "I don't like it, and I'm sorry I ever had anything to do with it." (Just in order to ridicule the Copenhagen interpretation of quantum mechanics, he contrived the famous thought experiment called Schrödinger's cat paradox.)

Erwin Schrödinger proposed the quantum mechanical model of the atom, which treats electrons as matter waves. ... The square of the wave function, ψ2, represents the probability of finding an electron in a given region within the atom.

 

Key points

Louis de Broglie proposed that all particles could be treated as matter waves with a wavelength λ, given by the following equation:              λ= h / mv

  • Erwin Schrödinger proposed the quantum mechanical model of the atom, which treats electrons as matter waves.
  • Schrödinger's equation, H^ψ =, can be solved to yield a series of wave function ψ, each of which is associated with an electron binding energy, E.
  • The square of the wave function, ψ, squared, represents the probability of finding an electron in a given region within the atom.
  • An atomic orbital is defined as the region within an atom that encloses where the electron is likely to be 90% of the time.
  • The Heisenberg uncertainty principle states that we can't know both the energy and position of an electron. Therefore, as we learn more about the electron's position, we know less about its energy, and vice versa.
  • Electrons have an intrinsic property called spin, and an electron can have one of two possible spin values: spin-up or spin-down.
  • Any two electrons occupying the same orbital must have opposite spins.


Saturday, 1 January 2022

 

ದಕ್ಷಿಣ ಭಾರತದ ಚಾಲುಕ್ಯರು

ಚಾಲುಕ್ಯರು ದಕ್ಷಿಣ ಪ್ರಸ್ಥಭೂಮಿಯ ಪ್ರದೇಶವನ್ನು ೬೦೦ ವರ್ಷಗಳಷ್ಟು ದೀರ್ಘ ಕಾಲ ಆಳಿದರು. ಈ ಅವಧಿಯಲ್ಲಿ ಮೂರು, ಸ್ವತಂತ್ರ ಆದರೆ ನಿಕಟ ಸಂಬಂಧದ, ರಾಜ್ಯಗಳಾಗಿ ಮೆರೆದಿದ್ದವು. ಇವು ಬಾದಾಮಿಯ ಚಾಲುಕ್ಯರು, (ಕ್ರಿ.ಶ. ೬ - ೮ನೆಯ ಶತಮಾನ) ಮತ್ತು ಅವರದೇ ಸೋದರ ಸಾಮ್ರಾಜ್ಯಗಳಾದ ಕಲ್ಯಾಣಿಯ ( ಪಶ್ಚಿಮ) ಚಾಲುಕ್ಯರು ಮತ್ತು ವೆಂಗಿಯ (ಪೂರ್ವ) ಚಾಲುಕ್ಯರು.

ಕರ್ನಾಟಕದ ಇತಿಹಾಸದಲ್ಲಿ , ಚಾಲುಕ್ಯರ ಕಾಲವನ್ನು ಸುವರ್ಣ ಯುಗವೆಂದು ಪರಿಗಣಿಸಲಾಗಿದೆ. ರಾಜ್ಯವಿಸ್ತಾರ ಅಷ್ಟೇ ಅಲ್ಲದೆ, ಈ ಕಾಲವು ದಕ್ಷ ಆಡಳಿತ ಕ್ರಮ, ಸಾಮಾಜಿಕ ಸುರಕ್ಷತೆ, ವಿದ್ಯಾಪ್ರಸಾರ , ಇತರ ಸಾಂಸ್ಕೃತಿಕ ಚಟುವಟಿಕೆಗಳು, ವ್ಯಾಪಾರ , ವಾಣಿಜ್ಯಗಳಲ್ಲಿ ವಿಕಾಸ , ಸಾಹಿತ್ಯ, ಕಲೆಮತ್ತು ವಾಸ್ತುಶಿಲ್ಪಗಳಲ್ಲಿ ಅಭಿವೃದ್ಧಿ ಇವುಗಳನ್ನೂ ಪ್ರತಿನಿಧಿಸುತ್ತದೆ. ಈ ಕಾಲವು ಸಾಮಾಜಿಕ ಸುಧಾರಣೆಗಳಿಗೂ ಇಂಬು ಕೊಟ್ಟು ಬಸವೇಶ್ವರರಂತಹ ವಿಶಿಷ್ಟ ಸುಧಾರಕರಿಂದ ವೀರಶೈವಪಂಥದ ಹುಟ್ಟಿಗೂ ಕಾರಣವಾಯಿತು"


ಬಾದಾಮಿಯ ಚಾಲುಕ್ಯರು

ಚಾಲುಕ್ಯ ಸಾಮ್ರಾಜ್ಯವನ್ನು ಕಟ್ಟಿದವನು ಒಂದನೆಯ ಪುಲಿಕೇಶಿ (ಕ್ರಿ.ಶ. ೫೫೦). ವಾತಾಪಿ ( ಕರ್ನಾಟಕದ ಬಾಗಲಕೋಟೆ ಜಿಲ್ಲೆಯ ಈಗಿನ ಬಾದಾಮಿ) ಯನ್ನು ವಶಪಡಿಸಿಕೊಂಡು ಅದನ್ನು ತನ್ನ ರಾಜಧಾನಿಯನ್ನಾಗಿ ಮಾಡಿಕೊಂಡ. ಈ ಚಾಲುಕ್ಯರು ಮುಂದೆ ಬಾದಾಮಿಯ ಚಾಲುಕ್ಯರು ಎಂದು ಪ್ರಸಿದ್ಧರಾದರು. ಪುಲಿಕೇಶಿ ಹಾಗೂ ಆತನ ವಂಶಸ್ಥರು ಆಳಿದ ರಾಜ್ಯ ಇಂದಿನ ಸಂಪೂರ್ಣ ಕರ್ನಾಟಕ ರಾಜ್ಯ, ಮಹಾರಾಷ್ಟ್ರ, ಗೋವಾ, ಮಧ್ಯಪ್ರದೇಶ, ಗುಜರಾತ್ ಮತ್ತು ಆಂಧ್ರ ಪ್ರದೇಶದ ಬಹುತೇಕ ಭಾಗಗಳನ್ನು ಒಳಗೊಂಡಿತ್ತು. ಇಮ್ಮಡಿ ಪುಲಿಕೇಶಿ ಬಾದಾಮಿ ಚಾಲುಕ್ಯರ ಅತಿ ದೊಡ್ಡ ಚಕ್ರವರ್ತಿ.

ಕ್ರಿ.ಶ. ೭೫೩ರಲ್ಲಿ ರಾಷ್ಟ್ರಕೂಟರ ದಂತಿದುರ್ಗನು, ಕೀರ್ತಿವರ್ಮನ್ನು ಸೋಲಿಸುವುದರೊಂದಿಗೆ ಈ ಚಾಲುಕ್ಯ ಸಾಮ್ರಾಜ್ಯಕ್ಕೆ ತೆರೆ ಬಿದ್ದಿತು.


ಕಲ್ಯಾಣಿ ಚಾಲುಕ್ಯರು

ರಾಷ್ಟ್ರಕೂಟರ ಕಾಲದಲ್ಲಿ ಹಿಮ್ಮೆಟ್ಟಿದ ಚಾಲುಕ್ಯ ಸಾಮ್ರಾಜ್ಯ, ಚಾಲುಕ್ಯರ ವಂಶಜರಲ್ಲಿ ಒಬ್ಬನಾದ ಎರಡನೇ ತೈಲಪನು,  ಮಾನ್ಯಖೇಡದ ಮೂರನೆಯ ಕೃಷ್ಣನನ್ನು ಪದಚ್ಯುತಮಾಡಿ, ರಾಷ್ಟ್ರಕೂಟರನ್ನು ಸೋಲಿಸಿ ಸುಮಾರು ಕ್ರಿ.ಶ. ೯೭೩ರ ಸಮಯಕ್ಕೆ ಪಟ್ಟಕ್ಕೆ ಬರುತ್ತಾರನೆ. ಚಾಲುಕ್ಯ ರಾಜ್ಯದ ಬಹುತೇಕ ಪ್ರದೇಶಗಳನ್ನು ಮತ್ತೆ ಕೈವಶಮಾಡಿಕೊಳ್ಳುವುದರೊಂದಿಗೆ, ತನ್ನ ವೈಭವವನ್ನು ಮರಳಿ ಪಡೆಯಿತು.  ಇವರು ಮಾನ್ಯಖೇಡವನ್ನು ತಮ್ಮ ಆರಂಭದ ರಾಜಧಾನಿಯಾಗಿ ಮಾಡಿಕೊಂಡು ಆಡಳಿತ ವಿಸ್ತರಿಸುತ್ತಾನೆ. ಇವರಿಗೂ ಚೋಳರಿಗೂ ಪದೇ ಪದೇ ಯುದ್ಧಗಳು ನಡೆಯುತ್ತಿದ್ದವು. ಮೊದಲನೆಯ ಸೋಮೇಶ್ವರ ಎಂಬ ಚಾಲುಕ್ಯ ಅರಸು ರಾಜಾಧಿರಾಜ ಚೋಳ ನನ್ನು ಕ್ರಿ.ಶ. ೧೦೫೨ ರಲ್ಲಿ ಸೋಲಿಸಿದನು. ಚಾಲುಕ್ಯರು ಸೋಮೇಶ್ವರನ ಕಾಲಕ್ಕೆ ತಮ್ಮ ರಾಜಧಾನಿಯನ್ನು ಮಾನ್ಯಖೇಡದಿಂದ ಇಂದಿನ ಕಲ್ಯಾಣಕ್ಕೆ ಸ್ಥಳಾಂತರಿಸುತ್ತಾರೆ. ಚಾಲುಕ್ಯರ ಈ ಶಾಖೆ ಕಲ್ಯಾಣಿಯ ( ಪಶ್ಚಿಮ) ಚಾಲುಕ್ಯರೆಂದು ಹೆಸರಾಯಿತು. ಮುಂದೆ ಸುಮಾರು ೨೫೦ ವರ್ಷ ಆಳಿದ ಈ ರಾಜವಂಶವು , ಚೋಳರೊಂದಿಗೂ , ವೆಂಗಿಯ ಚಾಲುಕ್ಯರೊಂದಿಗೂ ನಿರಂತರ ಹೋರಾಟದಲ್ಲಿ ತೊಡಗಿತ್ತು. ಸತ್ಯಾಶ್ರಯ (ಕ್ರಿ.ಶ. ೯ ೯ ೭-೧೦೦೮), ಒಂದನೆಯ ಸೋಮೇಶ್ವರ (ಕ್ರಿ.ಶ. ೧೦೪೨-೧೦೬ ೮) ಮತ್ತು ಆರನೆಯ ವಿಕ್ರಮಾದಿತ್ಯ (ಕ್ರಿ.ಶ. ೧೦೭೬ – ೧೧೨೬ ) ಈ ವಂಶದ ಕೆಲವು ಪ್ರಸಿದ್ಧ ರಾಜರುಗಳು.

ರನ್ನನಂತಹ ಶ್ರೇಷ್ಠ ಕನ್ನಡ ಕವಿಗಳಿಗೆ ಕಲ್ಯಾಣಿಯ ಚಾಲುಕ್ಯರು ಆಶ್ರಯ ಮತ್ತು ಪ್ರೋತ್ಸಾಹ ಕೊಟ್ಟರು. ರನ್ನನು ಎರಡನೆಯ ತೈಲಪನ ಮತ್ತು ಸತ್ಯಾಶ್ರಯನ ಆಸ್ಥಾನಕವಿಯಾಗಿದ್ದು, ಕಲ್ಯಾಣಿಯ ಚಾಲುಕ್ಯರ ಕಾಲದ ಮೊದಲ ಕವಿ. ಅಜಿತಪುರಾಣಸಾಹಸಭೀಮವಿಜಯ ಅಥವಾ ಗದಾಯುದ್ಧ, ಪರಶುರಾಮಚರಿತ ಮತ್ತು ರನ್ನಕಂದ ಇವನ ಪ್ರಸಿದ್ಧ ಕೃತಿಗಳು.. ಆ ಕಾಲದಲ್ಲಿ ಇನ್ನೂ ಅನೇಕ ಕನ್ನಡ ವಿದ್ವಾಂಸರು ಆಗಿಹೋದರು.

ಕಲ್ಯಾಣಿ ಚಾಲುಕ್ಯರ ರಾಜ ನಾಲ್ಕನೆಯ ವಿಕ್ರಮಾದಿತ್ಯನ ಆಸ್ಥಾನದಲ್ಲಿದ್ದ ಪ್ರಸಿದ್ಧ ಕವಿ ವಿದ್ಯಾಪತಿ ಬಿಲ್ಹಣ, ತನ್ನ ಕೃತಿ ವಿಕ್ರಮಾಂಕದೇವ ಚರಿತೆ ರಚಿಸುತ್ತಾನೆ. ಚಾಲುಕ್ಯ ವಂಶದ ಮುಂದಿನ ಪ್ರಸಿದ್ಧ ಅರಸು ಆರನೇ ವಿಕ್ರಮಾದಿತ್ಯ (ಕ್ರಿ.ಶ ೧೦೭೬-೧೧೨೬, ವಿಕ್ರಮಾಂಕ ಎಂದೂ ಹೆಸರು). ಆರನೆಯ ವಿಕ್ರಮಾದಿತ್ಯನ ಕಾಲಕ್ಕೆ ಇವರ ವೈಭವದ ಕಾಲ ಎನ್ನಬಹುದು. ವಿಕ್ರಮ ಶಕೆಯು ಇವರಿಂದಲೇ ಆರಂಭವಾದದ್ದು. ಕಲ್ಯಾಣಿಯ ಚಾಲುಕ್ಯರು ವಾದಿರಾಜ ( ಯಶೋಧರ ಚರಿತಮ್, ಪಾರ್ಶ್ವನಾಥ ಚರಿತಮ್)ರಂತಹ ಸಂಸ್ಕೃತ ವಿದ್ವಾಂಸರಿಗೆ ಪ್ರೋತ್ಸಾಹ ಕೊಟ್ಟರು. ತನಗೆ ಆಶ್ರಯ ಕೊಟ್ಟ ಆರನೆಯ ವಿಕ್ರಮಾದಿತ್ಯನನ್ನು ಬಿಲ್ಹಣನು ವಿಕ್ರಮಾಂಕದೇವ ಚರಿತೆಯ ಮೂಲಕ ಅಜರಾಮರವಾಗಿಸಿದ್ದಾನೆ. ಸುಪ್ರಸಿದ್ಧ ಮಿತಾಕ್ಷರ ಸಂಹಿತೆ ಬರೆದವನು ವಿಜ್ಞಾನೇಶ್ವರ(ಮರತೂರು). ಸ್ವತಃ ಮೂರನೆಯ ಸೋಮೇಶ್ವರನೇ ಕಲೆ ಮತ್ತು ವಿಜ್ಞಾನದ ಬಗೆಗೆ ವಿಶ್ವಕೋಶವನ್ನು ರಚಿಸಿದನು. ಜಗದೇಕಮಲ್ಲನು ಸಂಗೀತಚೂಡಾಮಣಿಯನ್ನು ರಚಿಸಿದನು. ಕಲ್ಯಾಣದ ಚಾಲುಕ್ಯರು ಸುಮಾರು ೨೫೦ ವರುಷಗಳ ಕಾಲ ಆಳ್ವಿಕೆ ಮಾಡುತ್ತಾರೆ. ಇವರ ಪ್ರದೇಶ ತುಂಗಭದ್ರೆಯಿಂದ ನರ್ಮದೆಯ ವರೆಗೆ ವಿಸ್ತರಿಸಿತ್ತು. ದಕ್ಷಿಣದ ಚೋಳರು ಒಮ್ಮೆ ತುಂಗಭದ್ರೆಯ ವರೆಗೆ ತಮ್ಮ ಸಾಮ್ರಾಜ್ಯ ವಿಸ್ತರಿಸಿದ್ದರು.

ಕಲ್ಯಾಣಿಯ ಚಾಲುಕ್ಯರು ಕರ್ನಾಟಕದ ಧಾರವಾಡಗದಗ ಮತ್ತು ಹಾವೇರಿ ಪ್ರದೇಶಗಳಲ್ಲಿ ಐವತ್ತಕ್ಕೂ ಹೆಚ್ಚು ದೇವಾಲಯಗಳನ್ನು ಕಟ್ಟಿದರು.

ವಿಕ್ರಮಾಂಕನ ಮರಣದ ನಂತರ ಚಾಲುಕ್ಯ ಸಾಮ್ರಾಜ್ಯ ಹೆಚ್ಚು ಕಾಲ ನಿಲ್ಲಲಿಲ್ಲ. 

ಹೊಯ್ಸಳರುಕಾಕತೀಯರು ಮತ್ತು ಯಾದವರು ಈ ರಾಜಮನೆತನಗಳ ಉತ್ಕರ್ಷದೊಂದಿಗೆ, ೧೧೮೦ರಲ್ಲಿ, ಕಲ್ಯಾಣಿಯ ಚಾಲುಕ್ಯರ ಸಾಮ್ರಾಜ್ಯವು ಅಸ್ತಂಗತವಾಯಿತು.


ವೆಂಗಿಯ (ಪೂರ್ವ) ಚಾಲುಕ್ಯರು.

ಇಂದಿನ ಆಂಧ್ರ ಪ್ರದೇಶದ ಕರಾವಳಿಯ ಭಾಗವಾಗಿದ್ದ, ವಿಷ್ಣುಕುಂಡಿನ ಸಾಮ್ರಾಜ್ಯದ ಅಳಿದುಳಿದ ಭಾಗಗಳನ್ನು ಸೋಲಿಸಿ, ಇಮ್ಮಡಿ ಪುಲಿಕೇಶಿಯು , ಅಲ್ಲಿಗೆ ತನ್ನ ತಮ್ಮ ಕುಬ್ಜ ವಿಷ್ಣುವರ್ಧನನನ್ನು ರಾಜಪ್ರತಿನಿಧಿಯಾಗಿ ನೇಮಿಸಿದನು. ಪುಲಿಕೇಶಿಯ ಮರಣದ ನಂತರ, ಈ ಶಾಖೆಯು ಸ್ವತಂತ್ರವಾಗಿ, ಮುಖ್ಯ ವಾತಾಪಿ ಸಾಮ್ರಾಜ್ಯಕ್ಕಿಂತ ಮುಂದೆ, ಅನೇಕ ಪೀಳಿಗೆಗಳವರೆಗೆ ಸ್ವತಂತ್ರ ರಾಜ್ಯಭಾರ ಮಾಡಿತು. ಈ ರಾಜರು ೯ ನೆಯ ಶತಮಾನದ ಮಧ್ಯದವರೆಗೂ, ವೆಂಗಿ ಪ್ರಾಂತ್ಯದಲ್ಲಿ ಕನ್ನಡಕ್ಕೆ ಪ್ರೋತ್ಸಾಹ ಕೊಟ್ಟರು. ಅಲ್ಲಿಂದ ಮುಂದಿನ ಶಾಸನಗಳಲ್ಲಿ ಕ್ರಮೇಣ ಕನ್ನಡಲಿಪಿಯಲ್ಲಿ ಬರೆದ ತೆಲುಗು ಭಾಷೆ ಕಾಣಬರುತ್ತದೆ.

Sunday, 12 December 2021

Electric motor वाइंडिंग्स को समझना

 

Evolution of Electrical energy

The fundamental principle of electricity generation was discovered during the 1820s and early 1830s by the British scientist Michael Faraday. His basic method is still used today: electric current is generated by the movement of a loop of wire or disc of copper between the poles of a magnet.

Electricity is most often generated at a power station by electromechanical generators, primarily driven by heat engines fueled by chemical combustion or nuclear fission but also by other means such as the kinetic energy of flowing water and wind. There are many other technologies that can be and are used to generate electricity such as solar photovoltaics and geothermal power.

Mathematically, electric current is defined as the rate of flow of charge through the cross-section of a conductor.

Electricity is Electrical charges moving through a wire.

E = QV
Where, Q is charge

V is the potential difference.

 

Units of Electrical Energy

The basic unit of electrical energy is the joule or watt-second. Electrical energy is said to be one joule when one ampere of current flows through the circuit for a second when the potential difference of one volt is applied across it. The commercial unit of electrical energy is the kilowatt-hour (kWh) which is also known as the Board of trade unit (B.O.T).
1 kwh = 1000 × 60 × 60   watt-second
1 kwh = 36 × 105     Ws or Joules
Generally, one kwh is called one unit.

Electrical Energy into Mechanical Energy

Electrical energy can be converted into other forms of energy like heat energy, light energy, motion etc. The best-known examples are:

  • Fan: The motor in Fan converts electrical energy into mechanical energy
  • Bulb: Here the electrical energy is converted into light energy.

Electricity travels at the speed of light that is more than 186,000 miles per second.

Electric power Definition – It is the rate at which work is done or energy is transformed in an electrical circuit. Simply put, it is a measure of how much energy is used in a span of time.

In physics, the rate of transfer of electrical energy by an electrical circuit per unit time is called electrical power.

P=VI                watt or Joule per second.

Where, V is the potential difference (volts),

I is the electric current (ampere).

 

We talked about the energy that is dissipated due to the heating up of the conductor.

But we know the formula for power is given by P = I V

 according to Ohm’s law, V = IR. Substituting we have,

P = I2R

It is this power that is responsible for heating up the coil of a bulb, which gives out heat and light.

Alternating Current (AC) is a type of electrical current, in which the direction of the flow of electrons switches back and forth at regular intervals or cycles. Current flowing in power lines and normal household electricity that comes from a wall outlet is alternating current. The standard current used in the U.S. is 60 cycles per second (i.e. a frequency of 60 Hz); in Europe and most other parts of the world it is 50 cycles per second (i.e. a frequency of 50 Hz.).

Direct current (DC) is an electrical current that flows consistently in one direction. The current that flows in a flashlight or another appliance running on batteries is a direct current.

One advantage of alternating current is that it is relatively cheap to change the voltage of the current. Furthermore, the inevitable loss of energy that occurs when current is carried over long distances is far smaller with the alternating current than with the direct current.

Examples of alternating current

To illustrate these concepts, consider a 230 V AC mains supply used in many countries around the world. It is so-called because its root mean square value is 230 V. This means that the time-averaged power delivered is equivalent to the power delivered by a DC voltage of 230 V. To determine the peak voltage (amplitude), we can rearrange the above equation to:  For 230 V AC, the peak voltage    is, therefore,, which is about 325 V. During the course of one cycle the voltage rises from zero to 325 V, falls through zero to −325 V, and returns to zero.

 

For decades, alternating current (AC) had the distinct advantage over direct current (DC; a steady flow of electric charge in one direction) of being able to transmit power over large distances without great loss of energy to resistance. The power transmitted is equal to the current times the voltage; however, the power lost is equal to the resistance times the square of the current. Changing voltages was very difficult with the first DC electric power grids in the late 19th century. Because of the power loss, these grids used low voltages to maintain high current and thus could only transmit usable power over short distances. DC power transmission was soon supplanted by AC systems that transmit power at very high voltages (and correspondingly low current) and easily use transformers to change the voltage. Present AC systems transmit power from generators at hundreds of thousands of volts and use transformers to lower the voltage to 220 volts (as in much of the world) for individual customers.

Alternating current is used to transmit information, as in the cases of telephone and cable television. Information signals are carried over a wide range of AC frequencies. POTS telephone signals have a frequency of about 3 kHz, close to the baseband audio frequency. Cable television and other cable-transmitted information currents may alternate at frequencies of tens to thousands of megahertz. These frequencies are similar to the electromagnetic wave frequencies often used to transmit the same types of information over the air.

Alternating current systems can use transformers to change the voltage from low to a high level and back, allowing generation and consumption at low voltages but transmission, possibly over great distances, at high voltage, with savings in the cost of conductors and energy losses.

The three engineers ZBD transformers:

The Ganz factory in 1884 shipped the world's first five high-efficiency AC transformers. This first unit had been manufactured to the following specifications: 1,400 W, 40 Hz, 120:72 V, 11.6:19.4 A, ratio 1.67:1, one-phase, shell form.

 In early 1885, the three engineers also eliminated the problem of eddy current losses with the invention of the lamination of electromagnetic cores.

The AC power system was developed and adopted rapidly after 1886 due to its ability to distribute electricity efficiently over long distances, overcoming the limitations of the direct current system. In 1886, the ZBD engineers designed the world's first power station that used AC generators to power a parallel-connected common electrical network, the steam-powered Rome-Cerchi power plant. The reliability of the AC technology received impetus after the Ganz Works electrified a large European metropolis: Rome in 1886.

In 1888, alternating current systems gained further viability with the introduction of a functional AC motor, something these systems had lacked up till then. The design of, an induction motor, was independently invented by Galileo Ferraris and Nikola Tesla (with Tesla's design being licensed by Westinghouse in the US). This design was further developed into the modern practical three-phase form.

            The Ames Hydroelectric Generating Plant and the original Niagara Falls Adams Power plant were among the first hydroelectric alternating current power plants. The first long-distance transmission of single-phase electricity was from a hydroelectric generating plant in Oregon at Willamette Falls which in 1890 sent power fourteen miles downriver to downtown Portland for street lighting. In 1891, a second transmission system was installed in Telluride Colorado. The San Antonio Canyon Generator was the third commercial single-phase hydroelectric AC power plant in the United States to provide long-distance electricity. It was completed on December 31, 1892, by Almarian William Decker to provide power to the city of Pomona, California, which was 14 miles away. In 1893, he designed the first commercial three-phase power plant in the United States using alternating current—the hydroelectric Mill Creek No. 1 Hydroelectric Plant near California. Decker’s design incorporated a 10 kV three-phase transmission and established the standards for the complete system of generation, transmission, and motors used today. 

Nikola Tesla, Serbian American inventor, and engineer discovered and patented the rotating magnetic field, the basis of most alternating-current machinery. He also developed the three-phase system of electric power transmission. He immigrated to the United States in 1884 and sold the patent rights to his system of alternating-current dynamos, transformers, and motors to George Westinghouse. In 1891 he invented the Tesla coil, an induction coil widely used in radio technology.

Serbian-American engineer and physicist Nikola Tesla (1856-1943) made dozens of breakthroughs in the production, transmission, and application of electric power. He invented the first alternating current (AC) motor and developed AC generation and transmission technology.

Tesla was from a family of Serbian origin. His father was an Orthodox priest; his mother was unschooled but highly intelligent. As he matured, he displayed remarkable imagination and creativity as well as a poetic touch.

Training for an engineering career, he attended the Technical University at GrazAustria, and the University of Prague. At Graz, he first saw the Gramme dynamo, which operated as a generator and, when reversed, became an electric motor, and he conceived a way to use alternating current to advantage. Later, at Budapest, he visualized the principle of the rotating magnetic field and developed plans for an induction motor that would become his first step toward the successful utilization of alternating current. In 1882 Tesla went to work in Paris for the Continental Edison Company, and, while on assignment to Strassburg in 1883, he constructed, after work hours, his first induction motor. Tesla sailed for America in 1884, arriving in New York with four cents in his pocket, a few of his own poems, and calculations for a flying machine. He first found employment with Thomas Edison, but the two inventors were far apart in background and methods, and their separation was inevitable.

In May 1888 George Westinghouse, head of the Westinghouse Electric Company in Pittsburgh, bought the patent rights to Tesla’s polyphase system of alternating-current dynamos, transformers, and motors. The transaction precipitated a titanic power struggle between Edison’s direct-current systems and the Tesla-Westinghouse alternating-current approach, which eventually won out.

Wednesday, 28 July 2021

 ರಸಾಯನ ಶಾಸ್ತ್ರದ ಇತಿಹಾಸ :

ಈ ಜಗತ್ತು ಪಂಚಮಹಾಭೂತಗಳಿಂದ ಆಗಿದೆ ಎಂದರು ಹಿಂದಿನವರು. ಆಕಾಶ , ಅಗ್ನಿ , ವಾಯು , ಜಲ ಮತ್ತು ಮಣ್ಣು ; ಈ ಪಂಚಮಹಾಭೂತಗಳು .

ವಸ್ತು , ಶಕ್ತಿ , ಆಕಾಶ ಮತ್ತು ಕಾಲ ಎಂದು ಇಂದಿನವರು ವರ್ಗಿಕರಣ ಮಾಡಿದರು . ವಾಯು, ಜಲ, ಮತ್ತು ಮಣ್ಣನ್ನು ಒಟ್ಟಿಗೆ ದ್ರವ್ಯ ಎಂದರು . ದ್ರವ್ಯವು ಸ್ಥಳವನ್ನು ಆಕ್ರಮಿಸುತ್ತದೆ . ಅದಕ್ಕೆ ದ್ರವ್ಯರಾಶಿ ಇದೆ .

೧೬೬೧ರಲ್ಲಿ ರಾಬರ್ಟ ಬಾಯ್ಲ್  ಧಾತುವಿನ ಪರಿಕಲ್ಪನೆ ನಿರೂಪಿಸಿದ . ಆತನು ಆಮ್ಲ ಮತ್ತು ಪ್ರತ್ಯಾಮ್ಲಗಳ ವಿವರ ನೀಡಿದ.

ಈತನು ಗಾಳಿಯ ಗುಣಗಳು ಅಧ್ಯಯನ ಮಾಡಿ, ಒಂದು ನಿರ್ದಿಷ್ಟ ರಾಶಿಯ ಅನಿಲದ ಗಾತ್ರ, ಒತ್ತಡ, ಹಾಗೂ ಉಷ್ಣತೆಯ ಸಂಭಂದದ ನಿಯಮವನ್ನು ನಿರೂಪಿಸಿದನು. 

ಒಂದೇ ಪ್ರಕಾರದ ಮೂಲ ಕಣಗಳಿಂದ ಆದ ದ್ರವ್ಯವನ್ನು ಧಾತು ಅಥವಾ ಮೂಲವಸ್ತು ಎಂದರು. ಒಂದು ಧಾತುವಿನ ಅತಿಸಣ್ಣ ಕಣಕ್ಕೆ ಪರಮಾಣು ಎಂದರು. ಒಂದೇ ಪ್ರಕಾರದ ಪರಮಾಣುಗಳಿಂದ ಆದ ವಸ್ತುವೇ ಧಾತು.

೧೮ನೇಯ ಶತಮಾನದಲ್ಲಿ ಜಲಜನಕ , ಆಮ್ಲಜನಕ . ಮತ್ತು ಇಂಗಾಲದ ಡೈ ಅಕ್ಸಯಿಡ್ ಎನ್ನುವ ಅನಿಲಗಳ ಶೋಧ ಮತ್ತು ಅವುಗಳ ಗುಣಗಳ ಅಧ್ಯಯನ ನಡೆಯಿತು .

೧೭೫೪ರಲ್ಲಿ ಜೋಸೆಫ್ ಬ್ಲ್ಯಾಕ್ ಎನ್ನುವ ಉಪನ್ಯಾಸಕನು ಸುಣ್ಣದ ಕಲ್ಲನ್ನು ಕಾಯಿಸಿ ಅದರಿಂದ ಇಂಗಾಲದ ಡೈ ಅಕ್ಸಯಿಡ್ ಅನಿಲ ಹೊರಸೂಸುವುದನ್ನು ಗಮನಿಸಿದನು. ಈತನು ನೀರಿನ ಗುಪ್ತೋಷ್ಣವನ್ನು ವಿವರಿಸಿದನು.

೧೭೬೬ರಲ್ಲಿ ಹೆನ್ರಿ ಕೆವೆಂಡಿಷ್ ತನ್ನ ಪ್ರಯೋಗಶಾಲೆಯಲ್ಲಿ ಜಲಜನಕ ಅನಿಲವನ್ನು ಕಂಡುಹಿಡಿದನು. 

೧೭೭೪ರಲ್ಲಿ ಪ್ರೀಸ್ಟ್ಲೆ ಪಾದರಸದ ಆಕ್ಸಯಿಡ್  ಅದಿರು ಕಾಯಿಸಿ ಆಮ್ಲಜನಕ ಅನಿಲ ಕಂಡುಹಿಡಿದನು .

೧೭೭೮ರಲ್ಲಿ ಫ್ರಾನ್ಸ ದೇಶದ ಲಾವೋಷಿಯೆರ್ ಎನ್ನುವ ವಿಜ್ಞಾನಿ ದಹನ ಕ್ರಿಯೆಯನ್ನು ವಿವರಿಸಿದನು . ಈತನು ಆಮ್ಲಜನಕ ಒಂದು ಧಾತು ಎಂದು ವಿವರಿಸಿದನು . ನಿಸರ್ಗದಲ್ಲಿ ಸಹಜವಾಗಿ ಆಮ್ಲಜನಕವು ಅನಿಲ ರೂಪದಲ್ಲಿ ಇರುತ್ತದೆ. ಗಾಳಿಯಲ್ಲಿ ೨೧% ಆಮ್ಲಜನಕ ಇದೆ . ಇದು ಕ್ರಿಯಾಶೀಲವಾಗಿದ್ದು ಅನ್ಯ ಧಾತುಗಳೊಂದಿಗೆ ರಾಸಾಯನಿಕವಾಗಿ ವರ್ತಿಸಿ ಆಕ್ಸಯಿಡಗಳನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ ಎಂದು ತೋರಿಸಿದನು. ಗಾಳಿಯಲ್ಲಿ ೭೮% ಸಾರಜನಕ ಅನಿಲ ಇದೆ. ಉಳಿದ ಭಾಗ ಜಡ ಅನಿಲಗಳದ್ದು. ನೀರಾವಿಯ ಪ್ರಮಾಣ ಸದಾ ಬದಲಾಗುತ್ತಇರುತ್ತದೆ.

೧೭೮೯ರಲ್ಲಿ ಲಾವೋಷಿಯರನು ಮೊದಲಬಾರಿಗೆ ಅಂದಿನವರೆಗೆ ತಿಳಿದಿರುವ ೨೩ ಧಾತುಗಳ ಪಟ್ಟಿ ಮಾಡಿದನು . ಈತನು ರಾಸಾಯನಿಕ ಬದಲಾವಣೆಯಲ್ಲಿ ಭಾಗವಹಿಸುವ ಧಾತುಗಳ ರಾಶಿ ಸಂರಕ್ಚೆಣೆಯ ನಿಯಮವನ್ನು ವಿವರಿಸಿದನು. ಈತನನ್ನು ರಸಾಯನ ಶಾಸ್ತ್ರದ ಪಿತಾಮಹ ಎಂದು ಪರಿಗಣಿಸಲಾಗುತ್ತದೆ.

೧೭೯೪ರ ಫ್ರೆಂಚ್ ಕ್ರಾಂತಿಯಲ್ಲಿ ವಿಜ್ಞಾನಿ ಲಾವೊಸಿರನು ಕೊಲೆಯಾದನು. 

೧೭೮೯ ರಲ್ಲಿ  ಪ್ರೌಸ್ಟ್  ಎನ್ನುವ  ವಿಜ್ಞಾನಿಯು  ಎರಡು ಧಾತುಗಳು ರಾಸಾಯನಿಕವಾಗಿ ಸಂಯೋಗ ಹೊಂದುವಾಗ ಅವು ಒಂದು ನಿರ್ದಿಷ್ಟ ರಾಶಿಯ ಅನುಪಾತದಲ್ಲಿ ಸೇರಿಕೊಳ್ಳುತ್ತವೆ  ಎಂದು ನಿರೂಪಿಸಿದರು.

೧೮೦೦ರಲ್ಲಿ ನೀರಿನಲ್ಲಿ ವಿದ್ಯುತ್ ಪ್ರವಾಹ ಹರಿಸಿ , ನೀರನ್ನು ವಿಭಜಿಸಿ ಆಮ್ಲಜನಕ ಮತ್ತು ಜಲಜನಕ ಅನಿಲಗಳಾಗಿ ವಿಂಗಡಿಸಿದರು . ಆದ್ದರಿಂದ ನೀರು ಮೂಲವಸ್ತು ಅಲ್ಲ ಬದಲಿಗೆ ಇದೊಂದು ಸಂಯುಕ್ತ ವಸ್ತು ಎಂದು ಖಚಿತವಾಯಿತು .

ಈ ಪ್ರಯೋಗದಲ್ಲಿ ಹೊರಸೂಸಿದ ಜಲಜನಕ ಮತ್ತು ಆಮ್ಲಜನಕ ಅನಿಲಗಳ ಗಾತ್ರದ ಅನುಪಾತ ೨:೧ ಇರುತ್ತದೆ. ಅಂದರೆ ಎರಡು ವಿಭಿನ್ನ ಅನಿಲಗಳು ಒಂದು ನಿರ್ದಿಷ್ಟ ಗಾತ್ರದ ಅನುಪಾತದಲ್ಲಿ ಸೇರಿ ಸಂಯುಕ್ತ ವಸ್ತು ರೂಪಗೊಳ್ಳುತ್ತದೆ ಎಂದು ಸಿದ್ದವಾಯಿತು. ಇದನ್ನು ಗೆ ಲುಸಾಕಾರ ನಿಯಮ ಎನ್ನುವರು.

ನೀರು ವಿಭಜಿಸುವ ರಾಸಾಯನಿಕ ಕ್ರಿಯೆಗೆ ಹೊರಗಿನಿಂದ ಶಕ್ತಿ ಒದಗಿಸಬೇಕಾಯಿತು. ಇದಕ್ಕೆ ವಿರುದ್ಧವಾಗಿ ಜಲಜನಕ ಮತ್ತು ಆಮ್ಲಜನಕ ಅನಿಲಗಳು ರಾಸಾಯನಿಕವಾಗಿ ಸೇರಿ, ನೀರು ಉಂಟಾಗುವ ಬದಲಾವಣೆಯಲ್ಲಿ ಶಕ್ತಿ ಹೊರಗೆ ಹಾಕಲಾಗುತ್ತದೆ. ಹೀಗೆ ಶಕ್ತಿಯನ್ನು ಪಡೆದುಕೊಳ್ಳುವ ಅಥವಾ ಶಕ್ತಿಯನ್ನು ಹೊರಚೆಲ್ಲುವ, ಎರಡು ಪ್ರಕಾರದ ರಾಸಾಯನಿಕ ಕ್ರಿಯೆಗಳಿರುತ್ತವೆ.

೧೮೦೩ರಲ್ಲಿ ಡಾಲ್ಟನ್ ಎನ್ನುವ ವಿಜ್ಞಾನಿ ಧಾತುವಿನ ಪರಮಾಣು ಸಿಧಾಂತವನ್ನು ಮಂಡಿಸಿದನು. ಧಾತುಗಳು ಪರಮಾಣುಗಳೆಂಬ ಒಡೆಯಲಾಗದ ಅತಿಸಣ್ಣ ಕಣಗಳಿಂದ ಆಗಿವೆ ಎಂದು ವಿವರಿಸಿದನು . ವಿವಿಧ ಧಾತುಗಳ ಪರಮಾಣುಗಳು ಭಿನ್ನ ಭಿನ್ನ ರಾಶಿಯನ್ನು ಹೊಂದಿರುವುದಾಗಿ ತಿಳಿಸಿದನು . ಈತನು ಮೊದಲಬಾರಿಗೆ ಧಾತುಗಳ ಸಾಪೇಕ್ಷ ಪರಮಾಣು ರಾಶಿಗಳ ಪಟ್ಟಿ ಮಾಡಿದನು .

೧೮೧೧ರಲ್ಲಿ ಅವಗಾಡ್ರೋ ಎನ್ನುವ ವಿಜ್ಞಾನಿ ಅನಿಲಗಳ ಅಣು ರೂಪದ ಕಣಗಳ ಮೇಲೆ ಪ್ರಯೋಗಗಳನ್ನು ಮಾಡಿ; ಸಮಾನ ಗಾತ್ರದ ಯಾವುದೇ ಅನಿಲಗಳು ಸಮಾನ ಪ್ರಮಾಣದ ಕಣಗಳು ಹೊಂದಿರುತ್ತವೆಂದು ಪ್ರತಿಪಾದಿಸಿದನು.

ಸಮಾನ ಗಾತ್ರದ ಜಲಜನಕ ಹಾಗು ಅಮ್ಲಜನಕ ಅನಿಲಗಳ ರಾಶಿಯು ೧:೧೬  ಅನುಪಾತದಲ್ಲಿ ಇರುತ್ತದೆ. ಜಲಜನಕದ ಪರಮಾಣುವಿನ ಸಾಪೇಕ್ಷೆರಾಶಿ ೧ ಆದರೆ ಆಮ್ಲಜನಕದ್ದು ೧೬ ಆಗುತ್ತದೆ. ನೀರಿನ ಅಣು ರಾಶಿ ೧೮ ಇರುತ್ತದೆ.  ೧೮ ಗ್ರಾಂ ನೀರನ್ನು ಒಂದು ಮೋಲ್ ನೀರು ಎನ್ನುವರು. ಒಂದು ಮೋಲ್ ನೀರಿನಲ್ಲಿ ೬.೦೨೨ x ೧೦ರ ಘಾತ ೨೩ ನೀರಿನ ಕಣಗಳಿವೆ. ಇದನ್ನು ಅವಗಾಡ್ರೋ ಸಂಖ್ಯೆ ಎಂದು ಸೂಚಿಸುವರು. 

೧೮೧೨ರಲ್ಲಿ ಹಂಫ್ರಿ ಡೇವಿ ಎನ್ನುವ ವಿಜ್ಞಾನಿಯು ಲವಣಗಳ ಮೇಲೆ ಪ್ರಬಲವಾದ ವಿದ್ಯುತ್ ಹರಿಸಿ, ರಾಸಾಯನಿಕ ಬದಲಾವಣೆ ಉಂಟುಮಾಡಿ, ಹೊಸ ಧಾತುಗಳ ಶೋಧ ಮಾಡಿದನು. ಈತನು ಪೊಟ್ಯಾಸಿಯಂ ಸೋಡಿಯಂ, ಕ್ಯಾಲ್ಸಿಯಂ ಮ್ಯಾಗ್ನೇಸಿಯಂ ಬೇರಿಯಂ ಮತ್ತು ಸ್ಟ್ರಾನಟಿಯಂ ಧಾತುಗಳನ್ನು ಕಂಡುಹಿಡಿದನು. ಅಲ್ಲದೆ ಕ್ಲೋರಿನ್ ಅನಿಲವೂ ಕೂಡಾ ಒಂದು ಧಾತು ಎಂದು ಸಿದ್ಧಮಾಡಿದ.

೧೮೨೬ ರಲ್ಲಿ ಡಾಲ್ಟನ್ನ ಶಿಷ್ಯನಾದ ಬರ್ಜೆಲಿಯಸನೂ, ಧಾತುಗಳನ್ನು ಹೆಸರಿಸಿದ  ಮತ್ತು ಅವುಗಳ ಹೆಸರಿನ ಮೂಲಾಕ್ಷರದಿಂದ ಧಾತುಗಳನ್ನು ಸಾಂಕೇತಿಕವಾಗಿ ಬರೆಯುವ ಕಲೆ ರೂಢಿಸಿದನು . ಇದರಿಂದ ಸಂಯುಕ್ತ ವಸ್ತುಗಳನ್ನು ಸಾಂಕೇತಿಕವಾಗಿ ಅಣು ಸೂತ್ರದ ರೂಪದಲ್ಲಿ ಬರೆಯಲು ಅನುಕೂಲವಾಯಿತು.

೧೮೨೮ರಲ್ಲಿ ವೋಹ್ಲರನು  ಮೊದಲಬಾರಿಗೆ ನಿರಯವ ರಾಸಾಯನಗಳನ್ನು ಬಳಸಿ, ಜೀವಿಗಳಲ್ಲಿ ಕಂಡುಬರುವ ಯೂರಿಯಾ ಎನ್ನುವ ಸಾವಯವ ಪದಾರ್ಥವನ್ನು ತಯ್ಯಾರಿಸಿದನು.

೧೮೩೦ರ ವರೆಗೆ ಕಂಡುಹಿಡಿದ ಧಾತುಗಳ ಸಂಖ್ಯೆ ೫೪ಕ್ಕೆ ಏರಿತು.

೧೮೩೪ರಲ್ಲಿ ಮೈಕಲ್ ಫ್ಯಾರಡೆಯವರ ನಿರೂಪಣೆ ; "ಅಯಾನಿಕ್ ದ್ರಾವಣಗಳಲ್ಲಿ ವಿದ್ಯುತ್ ಹರಿಸಿದಾಗ ಉಂಟಾಗುವ ರಾಸಾಯನಿಕ ಬದಲಾವಣೆಯು, ದ್ರಾವಣದಲ್ಲಿ ಹರಿಸಿದ ಒಟ್ಟು ವಿದ್ಯುತ್ತಿನ ಮೊತ್ತಕ್ಕೆ ಅನುರೂಪವಾಗಿ ಇರುತ್ತದೆ."

೧೮೪೧ರಲ್ಲಿ ಲಂಡನ್ ಪಟ್ಟಣದಲ್ಲಿ ರಾಸಾಯನ  ಶಾಸ್ತ್ರದ ಸಂಘ  ಸ್ಥಾಪನೆಗೊಂಡಿತು. 

೧೮೫೨ರಲ್ಲಿ ರಾಸಾಯನಿಕ ಸಂಯೋಗ ಸಾಮರ್ತ್ಯಯ ನಿರೂಪಣೆಯಾಯಿತು.

೧೮೫೯ರಲ್ಲಿ ಬನ್ಸೆನ್ ರೂ, ಪ್ರತಿಯೊಂದು ಧಾತುವು ತನ್ನದೇ ಆದ,  ವಿಶಿಷ್ಟ ಬೆಳಕಿನ ವರ್ಣಪಟಲವನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ ಎಂದು ಕಂಡುಹಿಡಿದರು. ಈ ವಿಧಾನವು ಹೊಸ ಧಾತುಗಳನ್ನು ಕಾಡುಹಿಡಿಯಲು ಅನುಕೂಲವಾಯಿತು. 

೧೮೬೦ರಲ್ಲಿ ವಿಜ್ಞಾನಿ ಕೆಕೂಲೆಯವರ ನೇತ್ರಿತ್ವದಲ್ಲಿ , ಜರ್ಮನಿ ದೇಶದಲ್ಲಿ ಮೊದಲಬಾರಿಗೆ ಜಾಗತಿಕ ರಸಾಯನ ಶಾಸ್ತ್ರದ ಸಮ್ಮೇಳನ ಏರ್ಪಟ್ಟಿತ್ತು. ಇದರಲ್ಲಿ ೧೪೦ ಜನ ವಿಜ್ಞಾನಿಗಳು ಪಾಲ್ಗೊಂಡರು.

೧೮೬೯ರಲ್ಲಿ ಸೈಬೀರಿಯಾದ ವಿಜ್ಞಾನಿ ಮೆಂಡೆಲಿವರು ಧಾತುಗಳ ಆವರ್ತಕ ಕೋಷ್ಟಕವನ್ನು ಪ್ರಕಟಿಸಿದರು. ಅವರು ಅಲ್ಲಿಯವರೆಗೆ ತಿಳಿದಿರುವ ೬೬ ಧಾತುಗಳನ್ನು ಕೋಷ್ಟಕದಲ್ಲಿ ಅಡ್ಡಸಾಲು ಹಾಗು ಕಂಬಸಾಲುಗಳಾಗಿ ವರ್ಗಿಕರಿಸಿದರು. ಧಾತುಗಳನ್ನು ಅವುಗಳ ಪರಮಾಣು ರಾಶಿಯ ಏರಿಕೆಯ ಕ್ರಮದಲ್ಲಿ ಬರೆದರು. 

೧೮೮೭ರಲ್ಲಿ ಆಮ್ಲ, ಪ್ರತ್ಯಾಮ್ಲ, ಮತ್ತು ಲವಣಗಳು ನೀರಿನಲ್ಲಿ ಕರಗಿ ಅಯಾನ್ಗಳಾಗಿ ಬೇರ್ಪಡುತ್ತವೆ ಎಂದು ಕಂಡುಕೊಂಡರು.

೧೮೯೮ರಲ್ಲಿ ವಿಲಿಯಂ ರಾಮಸೇ  ಎನ್ನುವ ವಿಜ್ಞಾನಿ, ಜಡ ಅನಿಲಗಳನ್ನು ಕಂಡುಹಿಡಿದರು.

೧೯೦೦ರ ಹೊತ್ತಿಗೆ ಧಾತುಗಳ ಸಂಖ್ಯೆ ೮೮ಕ್ಕೆ ತಲುಪಿತು.

೧೮೯೭ರಲ್ಲಿ ಜೆ ಜೆ ಥಾಮ್ಸನ್ನರು ಕ್ಯಾಥೋಡ್ ಕಿರಣಗಳ ಪ್ರಯೋಗ ಮಾಡಿ, ಎಲ್ಲಾಧಾತುಗಳ ಪರಮಾಣುಗಳು  ಎಲೆಕ್ಟ್ರಾನ್ ಗಳೆಂಬ ಉಪಕಣಗಳು ಹೊಂದಿವೆ ಎಂದು ವಿವರಿಸಿದರು. ಎಲೆಕ್ಟ್ರಾನ್ ಗಳು ಋಣ ವಿದ್ಯುತ್ ಆವೇಶ ಹೊಂದಿರುತ್ತವೆ.

೧೯೧೧ರ ಹೊತ್ತಿಗೆ ಪರಮಾಣುವೂ ಋಣ ವಿದ್ಯುತ್ ಆವೇಶಯುಳ್ಳ ಎಲೆಕ್ಟ್ರಾನ್ ಮತ್ತು ಧನ ಆವೇಶಯುಳ್ಳ ಬೀಜಕೇಂದ್ರ ಹೊಂದಿದೆ ಎಂದು ರದರಫೋರ್ಡರ ಪ್ರಯೋಗಗಳಿಂದ ಖಚಿತವಾಯಿತು. ಮೂಲತಃ ಪರಮಾಣುವಿನ ರಾಶಿಯು ಬೀಜಕೇಂದ್ರದ್ದೇ ಆಗಿದೆ. ಎಲೆಕ್ಟ್ರಾನಿನ ರಾಶಿಯು ನಗಣ್ಯ .

೧೯೧೩ರಲ್ಲಿ ಡೆನ್ಮಾರ್ಕಿನ ವಿಜ್ಞಾನಿ ನೀಲ್ಸ ಬೊಹರರು, ಹೈಡ್ರೋಜನ್ ಪರಮಾಣುವಿನ ರಚನಾ ಸಿಧಾಂತವನ್ನು ಎಸೆಸ್ವಿಯಾಗಿ ವಿವರಿಸಿದರು. ಪರಮಾಣುವಿನ ಬೀಜಕೇಂದ್ರದ ಸುತ್ತ ಎಲೆಕ್ಟ್ರಾನ್ ನಿರ್ಧಾರಿತ ಶಕ್ತಿ ಕವಚದಲ್ಲಿ ಮಾತ್ರ ಸುತ್ತುತ್ತಿರುತ್ತದೆ. ಪರಮಾಣುವಿನ ಹೆಚ್ಚಿನ ಗಾತ್ರ ಎಲೆಕ್ಟ್ರಾನುಗಳೇ ಆಕ್ರಮಿಸಿಕೊಂಡಿರುತ್ತವೆ.

೧೯೧೪ರಲ್ಲಿ ಆಂಗ್ಲ ವಿಜ್ಞಾನಿ ಹೆನ್ರಿ ಮೊಸೆಲಿಯವರಿಂದ ಪರಮಾಣು ಸಂಖ್ಯೆಯ ವ್ಯಾಖ್ಯಾನ ನೀಡಲಾಯಿತು. ಪರಮಾಣು ಸಂಖ್ಯೆಯು ಪರಮಾಣು ಬೀಜ ಹೊಂದಿರುವ ಒಟ್ಟು ಪ್ರೋಟಾನ್ ಗಳ  ಸಂಖ್ಯೆಗೆ ಸಮ ಇರುತ್ತದೆ. ಇದಾದನಂತರ ಧಾತುಗಳ ಆವರ್ತಕ ಕೋಷ್ಟಕವನ್ನು ಧಾತುಗಳ ಪರಮಾಣು ಸಂಖ್ಯೆ ಬಳಸಿ ಕೋಷ್ಠಕದ ನ್ಯೂನತೆಗಳನ್ನು ತಿದ್ದಲಾಯಿತು. ಆಧುನಿಕ ಆವರ್ತಕ ಕೋಷ್ಟಕದಲ್ಲಿ ೧೮ ಕಂಭ ಸಾಲುಗಳಿವೆ.

೧೯೧೬ರಲ್ಲಿ ಜ್ಯೂಲಿಯಸರಿಂದ, ಅಯಾನಿಕ್ ಸಂಯುಕ್ತಗಳ ರಚನೆಯಲ್ಲಿ, ಪರಮಾಣುಗಳ  ಅಷ್ಟಕ ನಿಯಮ ನಿರೂಪಣೆ.

೧೯೧೬ರಲ್ಲಿ ಅಮೆರಿಕೆಯ ವಿಜ್ಞಾನಿ ಜಿ. ಎನ್. ಲೆವಿಸರು, ರಾಸಾಯನಿಕ ಸಹವೇಲೆನ್ಸಿ ಬಂಧದ ನಿರೂಪಣೆ ಕೊಟ್ಟರು. ಲೆವಿಸರು ಸಹವಾಲೆನ್ಸಿ ಬಂಧ ಬಳಸಿ, ಸಂಯುಕ್ತ ಕಣಗಳ ಅಣುರಚನೆಯನ್ನು ಎಸೆಸ್ವಿಯಾಗಿ ವಿವರಿಸಿದರು. 

ಅವರು, ೧೯೨೩ರಲ್ಲಿ ಲೆವಿಸ್ ಆಮ್ಲ ಮತ್ತು ಪ್ರತ್ಯಾಮ್ಲಗಳ ಪರಿಕಲ್ಪನೆ ಕೊಟ್ಟರು. ರಾಸಾಯನಿಕ ಬದಲಾವಣೆಯಲ್ಲಿ, ಲೆವಿಸ್ ಆಮ್ಲಗಳು, ಇಲೆಕ್ಟ್ರಾನ್ ಜೋಡಿಯನ್ನು [ಪ್ರತ್ಯಾಮ್ಲಗಳಿಂದ] ಸ್ವೀಕರಿಸುತ್ತವೆ.

೧೯೧೯ರಲ್ಲಿ ರದರ್ಫೋರ್ಡರು, ಪರಮಾಣು ಬೀಜಕೇಂದ್ರದಲ್ಲಿರುವ  ಧನಾವೇಶಯುಳ್ಳ ಪ್ರೋಟಾನ್ ಕಣವನ್ನು ಕಂಡುಹಿಡಿದರು.

೧೯೨೪ರಲ್ಲಿ ಬ್ರೊಗ್ಲೆಯವರಿಂದ ಎಲೆಕ್ಟ್ರಾನಿನ ರಚನಾ ರೂಪ, ಅಲೆ ಹಾಗೂ ಕಣ ಎನ್ನುವ ದ್ವಿಗುಣ ಪ್ರಕೃತಿಯ ನಿರೂಪಣೆ.

೧೯೨೬ರಲ್ಲಿ ಶ್ರೋಡಿಂಗರರಿಂದ ಪರಮಾಣುವಿನ ರಚನೆಯ ಶಕಲಸಿಧಾಂತದ ನಿರೂಪಣೆ.

೧೯೩೨ರಲ್ಲಿ ಜೇಮ್ಸ್ ಚಾಡ್ವಿಕ್ ರವರು, ಪರಮಾಣು ಬೀಜಕೇಂದ್ರ ಹೊಂದಿರುವ ನ್ಯೂಟ್ರಾನ್ ಎನ್ನುವ ಉಪಕಣವನ್ನು ಕಂಡುಹಿಡಿದರು. ಈ ಕಣಕ್ಕೆ ಯಾವುದೇ ವಿದ್ಯುತ್ ಆವೇಷ ಇಲ್ಲ. ಹೀಗೆ ಒಂದು ಪರಮಾಣುವೂ ಎಲೆಕ್ಟ್ರಾನ್, ಪ್ರೋಟಾನ್, ಮತ್ತು ನ್ಯೂಟ್ರಾನ್ ಎನ್ನುವ ಸೂಕ್ಷ್ಮ ಕಣಗಳಿಂದ ಆಗಿದೆ. ಪ್ರೋಟಾನ್ ಅಥವಾ ನ್ಯೂಟ್ರಾನ್ ಕಣದ ರಾಶಿಗೆ ಹೋಲಿಸಿದರೆ ಎಲೆಕ್ಟ್ರಾನ್ ರಾಶಿಯು ನಗಣ್ಯ ಎನಿಸುತ್ತದೆ. ಆದರೆ ಎಲೆಕ್ಟ್ರಾನ್ ಮತ್ತು ಪ್ರೋಟಾನ್ ಗಳ ವಿದ್ಯುತ್ ಆವೇಶವು ಸಮ ಇರುತ್ತದೆ.  ಒಂದು ಪರಮಾಣುವಿನ ಎಲೆಕ್ಟ್ರಾನ್ ಮತ್ತು ಪ್ರೋಟಾನ್ ಗಳ ಸಂಖ್ಯೆ ಸಮಾನವಾಗಿರುತ್ತದೆ.