Monday, 13 December 2021
Sunday, 12 December 2021
Evolution of Electrical energy
The fundamental principle of electricity generation was discovered during the 1820s and early 1830s by the British scientist Michael Faraday. His basic method is still used today: electric current is generated by the movement of a loop of wire or disc of copper between the poles of a magnet.
Electricity is most often generated at a power
station by electromechanical generators, primarily driven
by heat engines fueled by chemical combustion or nuclear
fission but also by other means such as the kinetic
energy of flowing water and wind. There are many other
technologies that can be and are used to generate electricity such as
solar photovoltaics and geothermal
power.
Mathematically, electric current is defined
as the rate of
flow of charge through the cross-section of a conductor.
Electricity is Electrical charges moving through a wire.
E = QV
Where, Q is charge
V is
the potential difference.
Units of Electrical Energy
The basic unit of electrical energy is the
joule or watt-second. Electrical energy is said to be one joule when one
ampere of current flows through the circuit for a second when the potential
difference of one volt is applied across it. The commercial unit of electrical
energy is the kilowatt-hour (kWh) which is also known as the Board of trade
unit (B.O.T).
1 kwh = 1000 × 60 × 60 watt-second
1 kwh = 36 × 105 Ws or Joules
Generally, one kwh is called one unit.
Electrical Energy into Mechanical Energy
Electrical energy can be converted into other
forms of energy like heat energy, light energy, motion etc. The best-known examples
are:
- Fan: The motor in Fan converts
electrical energy into mechanical energy
- Bulb: Here the electrical
energy is converted into light energy.
Electricity travels at the speed of light that is more than
186,000 miles per second.
Electric power Definition – It is the rate
at which work is done or energy is transformed in an electrical circuit.
Simply put, it is a measure of how much energy is used in a span of time.
In physics, the rate of transfer of electrical energy by an
electrical circuit per unit time is called electrical power.
P=VI watt or
Joule per second.
Where, V is the potential difference (volts),
I is
the electric current (ampere).
We talked about the energy that is dissipated due to the
heating up of the conductor.
But we know the formula for power is given by P = I V
according to Ohm’s law, V =
IR. Substituting we have,
P = I2R
It is this power that is responsible for
heating up the coil of a bulb, which gives out heat and light.
Alternating Current (AC) is
a type of electrical current, in which the direction of the flow of electrons
switches back and forth at regular intervals or cycles. Current flowing in
power lines and normal household electricity that comes from a wall outlet is
alternating current. The standard current used in the U.S. is 60 cycles per
second (i.e. a frequency of 60 Hz); in Europe and most other parts of the world
it is 50 cycles per second (i.e. a frequency of 50 Hz.).
Direct current (DC) is an electrical current that flows consistently in one direction. The current that
flows in a flashlight or another appliance running on batteries is a direct
current.
One advantage of alternating current is that it is
relatively cheap to change the voltage of the current. Furthermore, the
inevitable loss of energy that occurs when current is carried over long
distances is far smaller with the alternating current than with the direct current.
Examples
of alternating current
To illustrate these concepts, consider a 230 V AC mains supply used in many countries around the world. It is so-called because its root mean square value is 230 V. This means that the time-averaged power delivered is equivalent to the power delivered by a DC voltage of 230 V. To determine the peak voltage (amplitude), we can rearrange the above equation to: For 230 V AC, the peak voltage is, therefore,, which is about 325 V. During the course of one cycle the voltage rises from zero to 325 V, falls through zero to −325 V, and returns to zero.
For
decades, alternating current (AC) had the distinct advantage over direct current (DC; a steady flow
of electric charge in one direction) of being able to transmit power over large
distances without great loss of energy to resistance. The power
transmitted is equal to the current times the voltage; however, the power lost
is equal to the resistance times the square of the current. Changing voltages
was very difficult with the first DC electric power grids in the late
19th century. Because of the power loss, these grids used low voltages to
maintain high current and thus could only transmit usable power over short
distances. DC power transmission was soon supplanted by AC systems that
transmit power at very high voltages (and correspondingly low current) and
easily use transformers to change the
voltage. Present AC systems transmit power from generators at hundreds of
thousands of volts and use transformers to lower the voltage to 220 volts (as
in much of the world) for individual customers.
Alternating current is used to transmit information, as in the cases of telephone and cable
television. Information signals are carried over a wide
range of AC frequencies. POTS telephone signals have a frequency of about
3 kHz, close to the baseband audio frequency. Cable television and other
cable-transmitted information currents may alternate at frequencies of tens to
thousands of megahertz. These frequencies are similar to the electromagnetic
wave frequencies often used to transmit the same types of information over the air.
Alternating current systems can use transformers to change the voltage from low to a high level and back,
allowing generation and consumption at low voltages but transmission, possibly
over great distances, at high voltage, with savings in the cost of conductors
and energy losses.
The three engineers ZBD transformers:
The Ganz factory in 1884 shipped the world's first five
high-efficiency AC transformers. This first unit had been
manufactured to the following specifications: 1,400 W, 40 Hz, 120:72 V,
11.6:19.4 A, ratio 1.67:1, one-phase, shell form.
In early
1885, the three engineers also eliminated the problem of eddy
current losses with the invention of the lamination
of electromagnetic cores.
The AC power system was developed and adopted rapidly after 1886 due to its ability to distribute electricity efficiently over long distances, overcoming the limitations of the direct current system. In 1886, the ZBD engineers designed the world's first power station that used AC generators to power a parallel-connected common electrical network, the steam-powered Rome-Cerchi power plant. The reliability of the AC technology received impetus after the Ganz Works electrified a large European metropolis: Rome in 1886.
In 1888, alternating current systems gained further viability
with the introduction of a functional AC
motor, something these systems had lacked up till then.
The design of, an induction
motor, was independently invented by Galileo
Ferraris and Nikola
Tesla (with Tesla's design being licensed by
Westinghouse in the US). This design was further developed into the modern
practical three-phase form.
The Ames Hydroelectric Generating Plant and the original Niagara Falls Adams Power plant were among the first hydroelectric alternating current power plants. The first long-distance transmission of single-phase electricity was from a hydroelectric generating plant in Oregon at Willamette Falls which in 1890 sent power fourteen miles downriver to downtown Portland for street lighting. In 1891, a second transmission system was installed in Telluride Colorado. The San Antonio Canyon Generator was the third commercial single-phase hydroelectric AC power plant in the United States to provide long-distance electricity. It was completed on December 31, 1892, by Almarian William Decker to provide power to the city of Pomona, California, which was 14 miles away. In 1893, he designed the first commercial three-phase power plant in the United States using alternating current—the hydroelectric Mill Creek No. 1 Hydroelectric Plant near California. Decker’s design incorporated a 10 kV three-phase transmission and established the standards for the complete system of generation, transmission, and motors used today.
Nikola
Tesla, Serbian American inventor, and engineer discovered and
patented the rotating magnetic
field, the basis of most alternating-current machinery.
He also developed the three-phase system of electric
power transmission. He immigrated to the United States in
1884 and sold the patent rights
to his system of alternating-current dynamos, transformers, and
motors to George
Westinghouse. In 1891 he invented the Tesla coil, an induction
coil widely used in radio
technology.
Serbian-American engineer and physicist
Nikola Tesla (1856-1943) made dozens of breakthroughs in the production,
transmission, and application of electric power. He invented the first
alternating current (AC) motor and developed AC generation and
transmission technology.
Tesla was
from a family of Serbian origin. His father was an Orthodox priest; his mother
was unschooled but highly intelligent. As he matured, he displayed remarkable
imagination and creativity as well as a poetic touch.
Training
for an engineering career,
he attended the Technical University at Graz, Austria, and
the University
of Prague. At Graz, he first saw the Gramme dynamo, which
operated as a generator and, when reversed, became an electric
motor, and he conceived a way to use alternating
current to advantage. Later, at Budapest, he
visualized the principle of the rotating magnetic
field and developed plans for an induction motor
that would become his first step toward the successful utilization of
alternating current. In 1882 Tesla went to work in Paris for the Continental
Edison Company, and, while on assignment to Strassburg in 1883, he constructed,
after work hours, his first induction motor. Tesla sailed for America in 1884,
arriving in New York with four cents in his pocket, a few of his own poems, and
calculations for a flying machine. He first found employment with Thomas
Edison, but the two inventors were far apart in background and
methods, and their separation was inevitable.
In May
1888 George
Westinghouse, head of the Westinghouse
Electric Company in Pittsburgh, bought
the patent rights to Tesla’s polyphase
system of alternating-current dynamos, transformers, and motors. The
transaction precipitated a titanic power struggle between Edison’s direct-current systems
and the Tesla-Westinghouse alternating-current approach, which eventually won
out.
Wednesday, 28 July 2021
ರಸಾಯನ ಶಾಸ್ತ್ರದ ಇತಿಹಾಸ :
ಈ ಜಗತ್ತು ಪಂಚಮಹಾಭೂತಗಳಿಂದ ಆಗಿದೆ ಎಂದರು ಹಿಂದಿನವರು. ಆಕಾಶ , ಅಗ್ನಿ , ವಾಯು , ಜಲ ಮತ್ತು ಮಣ್ಣು ; ಈ ಪಂಚಮಹಾಭೂತಗಳು .
ವಸ್ತು , ಶಕ್ತಿ , ಆಕಾಶ ಮತ್ತು ಕಾಲ ಎಂದು ಇಂದಿನವರು ವರ್ಗಿಕರಣ ಮಾಡಿದರು . ವಾಯು, ಜಲ, ಮತ್ತು ಮಣ್ಣನ್ನು ಒಟ್ಟಿಗೆ ದ್ರವ್ಯ ಎಂದರು . ದ್ರವ್ಯವು ಸ್ಥಳವನ್ನು ಆಕ್ರಮಿಸುತ್ತದೆ . ಅದಕ್ಕೆ ದ್ರವ್ಯರಾಶಿ ಇದೆ .
೧೬೬೧ರಲ್ಲಿ ರಾಬರ್ಟ ಬಾಯ್ಲ್ ಧಾತುವಿನ ಪರಿಕಲ್ಪನೆ ನಿರೂಪಿಸಿದ . ಆತನು ಆಮ್ಲ ಮತ್ತು ಪ್ರತ್ಯಾಮ್ಲಗಳ ವಿವರ ನೀಡಿದ.
ಈತನು ಗಾಳಿಯ ಗುಣಗಳು ಅಧ್ಯಯನ ಮಾಡಿ, ಒಂದು ನಿರ್ದಿಷ್ಟ ರಾಶಿಯ ಅನಿಲದ ಗಾತ್ರ, ಒತ್ತಡ, ಹಾಗೂ ಉಷ್ಣತೆಯ ಸಂಭಂದದ ನಿಯಮವನ್ನು ನಿರೂಪಿಸಿದನು.
ಒಂದೇ ಪ್ರಕಾರದ ಮೂಲ ಕಣಗಳಿಂದ ಆದ ದ್ರವ್ಯವನ್ನು ಧಾತು ಅಥವಾ ಮೂಲವಸ್ತು ಎಂದರು. ಒಂದು ಧಾತುವಿನ ಅತಿಸಣ್ಣ ಕಣಕ್ಕೆ ಪರಮಾಣು ಎಂದರು. ಒಂದೇ ಪ್ರಕಾರದ ಪರಮಾಣುಗಳಿಂದ ಆದ ವಸ್ತುವೇ ಧಾತು.
೧೮ನೇಯ ಶತಮಾನದಲ್ಲಿ ಜಲಜನಕ , ಆಮ್ಲಜನಕ . ಮತ್ತು ಇಂಗಾಲದ ಡೈ ಅಕ್ಸಯಿಡ್ ಎನ್ನುವ ಅನಿಲಗಳ ಶೋಧ ಮತ್ತು ಅವುಗಳ ಗುಣಗಳ ಅಧ್ಯಯನ ನಡೆಯಿತು .
೧೭೫೪ರಲ್ಲಿ ಜೋಸೆಫ್ ಬ್ಲ್ಯಾಕ್ ಎನ್ನುವ ಉಪನ್ಯಾಸಕನು ಸುಣ್ಣದ ಕಲ್ಲನ್ನು ಕಾಯಿಸಿ ಅದರಿಂದ ಇಂಗಾಲದ ಡೈ ಅಕ್ಸಯಿಡ್ ಅನಿಲ ಹೊರಸೂಸುವುದನ್ನು ಗಮನಿಸಿದನು. ಈತನು ನೀರಿನ ಗುಪ್ತೋಷ್ಣವನ್ನು ವಿವರಿಸಿದನು.
೧೭೬೬ರಲ್ಲಿ ಹೆನ್ರಿ ಕೆವೆಂಡಿಷ್ ತನ್ನ ಪ್ರಯೋಗಶಾಲೆಯಲ್ಲಿ ಜಲಜನಕ ಅನಿಲವನ್ನು ಕಂಡುಹಿಡಿದನು.
೧೭೭೪ರಲ್ಲಿ ಪ್ರೀಸ್ಟ್ಲೆ ಪಾದರಸದ ಆಕ್ಸಯಿಡ್ ಅದಿರು ಕಾಯಿಸಿ ಆಮ್ಲಜನಕ ಅನಿಲ ಕಂಡುಹಿಡಿದನು .
೧೭೭೮ರಲ್ಲಿ ಫ್ರಾನ್ಸ ದೇಶದ ಲಾವೋಷಿಯೆರ್ ಎನ್ನುವ ವಿಜ್ಞಾನಿ ದಹನ ಕ್ರಿಯೆಯನ್ನು ವಿವರಿಸಿದನು . ಈತನು ಆಮ್ಲಜನಕ ಒಂದು ಧಾತು ಎಂದು ವಿವರಿಸಿದನು . ನಿಸರ್ಗದಲ್ಲಿ ಸಹಜವಾಗಿ ಆಮ್ಲಜನಕವು ಅನಿಲ ರೂಪದಲ್ಲಿ ಇರುತ್ತದೆ. ಗಾಳಿಯಲ್ಲಿ ೨೧% ಆಮ್ಲಜನಕ ಇದೆ . ಇದು ಕ್ರಿಯಾಶೀಲವಾಗಿದ್ದು ಅನ್ಯ ಧಾತುಗಳೊಂದಿಗೆ ರಾಸಾಯನಿಕವಾಗಿ ವರ್ತಿಸಿ ಆಕ್ಸಯಿಡಗಳನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ ಎಂದು ತೋರಿಸಿದನು. ಗಾಳಿಯಲ್ಲಿ ೭೮% ಸಾರಜನಕ ಅನಿಲ ಇದೆ. ಉಳಿದ ಭಾಗ ಜಡ ಅನಿಲಗಳದ್ದು. ನೀರಾವಿಯ ಪ್ರಮಾಣ ಸದಾ ಬದಲಾಗುತ್ತಇರುತ್ತದೆ.
೧೭೮೯ರಲ್ಲಿ ಲಾವೋಷಿಯರನು ಮೊದಲಬಾರಿಗೆ ಅಂದಿನವರೆಗೆ ತಿಳಿದಿರುವ ೨೩ ಧಾತುಗಳ ಪಟ್ಟಿ ಮಾಡಿದನು . ಈತನು ರಾಸಾಯನಿಕ ಬದಲಾವಣೆಯಲ್ಲಿ ಭಾಗವಹಿಸುವ ಧಾತುಗಳ ರಾಶಿ ಸಂರಕ್ಚೆಣೆಯ ನಿಯಮವನ್ನು ವಿವರಿಸಿದನು. ಈತನನ್ನು ರಸಾಯನ ಶಾಸ್ತ್ರದ ಪಿತಾಮಹ ಎಂದು ಪರಿಗಣಿಸಲಾಗುತ್ತದೆ.
೧೭೯೪ರ ಫ್ರೆಂಚ್ ಕ್ರಾಂತಿಯಲ್ಲಿ ವಿಜ್ಞಾನಿ ಲಾವೊಸಿರನು ಕೊಲೆಯಾದನು.
೧೭೮೯ ರಲ್ಲಿ ಪ್ರೌಸ್ಟ್ ಎನ್ನುವ ವಿಜ್ಞಾನಿಯು ಎರಡು ಧಾತುಗಳು ರಾಸಾಯನಿಕವಾಗಿ ಸಂಯೋಗ ಹೊಂದುವಾಗ ಅವು ಒಂದು ನಿರ್ದಿಷ್ಟ ರಾಶಿಯ ಅನುಪಾತದಲ್ಲಿ ಸೇರಿಕೊಳ್ಳುತ್ತವೆ ಎಂದು ನಿರೂಪಿಸಿದರು.
೧೮೦೦ರಲ್ಲಿ ನೀರಿನಲ್ಲಿ ವಿದ್ಯುತ್ ಪ್ರವಾಹ ಹರಿಸಿ , ನೀರನ್ನು ವಿಭಜಿಸಿ ಆಮ್ಲಜನಕ ಮತ್ತು ಜಲಜನಕ ಅನಿಲಗಳಾಗಿ ವಿಂಗಡಿಸಿದರು . ಆದ್ದರಿಂದ ನೀರು ಮೂಲವಸ್ತು ಅಲ್ಲ ಬದಲಿಗೆ ಇದೊಂದು ಸಂಯುಕ್ತ ವಸ್ತು ಎಂದು ಖಚಿತವಾಯಿತು .
ಈ ಪ್ರಯೋಗದಲ್ಲಿ ಹೊರಸೂಸಿದ ಜಲಜನಕ ಮತ್ತು ಆಮ್ಲಜನಕ ಅನಿಲಗಳ ಗಾತ್ರದ ಅನುಪಾತ ೨:೧ ಇರುತ್ತದೆ. ಅಂದರೆ ಎರಡು ವಿಭಿನ್ನ ಅನಿಲಗಳು ಒಂದು ನಿರ್ದಿಷ್ಟ ಗಾತ್ರದ ಅನುಪಾತದಲ್ಲಿ ಸೇರಿ ಸಂಯುಕ್ತ ವಸ್ತು ರೂಪಗೊಳ್ಳುತ್ತದೆ ಎಂದು ಸಿದ್ದವಾಯಿತು. ಇದನ್ನು ಗೆ ಲುಸಾಕಾರ ನಿಯಮ ಎನ್ನುವರು.
ನೀರು ವಿಭಜಿಸುವ ರಾಸಾಯನಿಕ ಕ್ರಿಯೆಗೆ ಹೊರಗಿನಿಂದ ಶಕ್ತಿ ಒದಗಿಸಬೇಕಾಯಿತು. ಇದಕ್ಕೆ ವಿರುದ್ಧವಾಗಿ ಜಲಜನಕ ಮತ್ತು ಆಮ್ಲಜನಕ ಅನಿಲಗಳು ರಾಸಾಯನಿಕವಾಗಿ ಸೇರಿ, ನೀರು ಉಂಟಾಗುವ ಬದಲಾವಣೆಯಲ್ಲಿ ಶಕ್ತಿ ಹೊರಗೆ ಹಾಕಲಾಗುತ್ತದೆ. ಹೀಗೆ ಶಕ್ತಿಯನ್ನು ಪಡೆದುಕೊಳ್ಳುವ ಅಥವಾ ಶಕ್ತಿಯನ್ನು ಹೊರಚೆಲ್ಲುವ, ಎರಡು ಪ್ರಕಾರದ ರಾಸಾಯನಿಕ ಕ್ರಿಯೆಗಳಿರುತ್ತವೆ.
೧೮೦೩ರಲ್ಲಿ ಡಾಲ್ಟನ್ ಎನ್ನುವ ವಿಜ್ಞಾನಿ ಧಾತುವಿನ ಪರಮಾಣು ಸಿಧಾಂತವನ್ನು ಮಂಡಿಸಿದನು. ಧಾತುಗಳು ಪರಮಾಣುಗಳೆಂಬ ಒಡೆಯಲಾಗದ ಅತಿಸಣ್ಣ ಕಣಗಳಿಂದ ಆಗಿವೆ ಎಂದು ವಿವರಿಸಿದನು . ವಿವಿಧ ಧಾತುಗಳ ಪರಮಾಣುಗಳು ಭಿನ್ನ ಭಿನ್ನ ರಾಶಿಯನ್ನು ಹೊಂದಿರುವುದಾಗಿ ತಿಳಿಸಿದನು . ಈತನು ಮೊದಲಬಾರಿಗೆ ಧಾತುಗಳ ಸಾಪೇಕ್ಷ ಪರಮಾಣು ರಾಶಿಗಳ ಪಟ್ಟಿ ಮಾಡಿದನು .
೧೮೧೧ರಲ್ಲಿ ಅವಗಾಡ್ರೋ ಎನ್ನುವ ವಿಜ್ಞಾನಿ ಅನಿಲಗಳ ಅಣು ರೂಪದ ಕಣಗಳ ಮೇಲೆ ಪ್ರಯೋಗಗಳನ್ನು ಮಾಡಿ; ಸಮಾನ ಗಾತ್ರದ ಯಾವುದೇ ಅನಿಲಗಳು ಸಮಾನ ಪ್ರಮಾಣದ ಕಣಗಳು ಹೊಂದಿರುತ್ತವೆಂದು ಪ್ರತಿಪಾದಿಸಿದನು.
ಸಮಾನ ಗಾತ್ರದ ಜಲಜನಕ ಹಾಗು ಅಮ್ಲಜನಕ ಅನಿಲಗಳ ರಾಶಿಯು ೧:೧೬ ಅನುಪಾತದಲ್ಲಿ ಇರುತ್ತದೆ. ಜಲಜನಕದ ಪರಮಾಣುವಿನ ಸಾಪೇಕ್ಷೆರಾಶಿ ೧ ಆದರೆ ಆಮ್ಲಜನಕದ್ದು ೧೬ ಆಗುತ್ತದೆ. ನೀರಿನ ಅಣು ರಾಶಿ ೧೮ ಇರುತ್ತದೆ. ೧೮ ಗ್ರಾಂ ನೀರನ್ನು ಒಂದು ಮೋಲ್ ನೀರು ಎನ್ನುವರು. ಒಂದು ಮೋಲ್ ನೀರಿನಲ್ಲಿ ೬.೦೨೨ x ೧೦ರ ಘಾತ ೨೩ ನೀರಿನ ಕಣಗಳಿವೆ. ಇದನ್ನು ಅವಗಾಡ್ರೋ ಸಂಖ್ಯೆ ಎಂದು ಸೂಚಿಸುವರು.
೧೮೧೨ರಲ್ಲಿ ಹಂಫ್ರಿ ಡೇವಿ ಎನ್ನುವ ವಿಜ್ಞಾನಿಯು ಲವಣಗಳ ಮೇಲೆ ಪ್ರಬಲವಾದ ವಿದ್ಯುತ್ ಹರಿಸಿ, ರಾಸಾಯನಿಕ ಬದಲಾವಣೆ ಉಂಟುಮಾಡಿ, ಹೊಸ ಧಾತುಗಳ ಶೋಧ ಮಾಡಿದನು. ಈತನು ಪೊಟ್ಯಾಸಿಯಂ ಸೋಡಿಯಂ, ಕ್ಯಾಲ್ಸಿಯಂ ಮ್ಯಾಗ್ನೇಸಿಯಂ ಬೇರಿಯಂ ಮತ್ತು ಸ್ಟ್ರಾನಟಿಯಂ ಧಾತುಗಳನ್ನು ಕಂಡುಹಿಡಿದನು. ಅಲ್ಲದೆ ಕ್ಲೋರಿನ್ ಅನಿಲವೂ ಕೂಡಾ ಒಂದು ಧಾತು ಎಂದು ಸಿದ್ಧಮಾಡಿದ.
೧೮೨೬ ರಲ್ಲಿ ಡಾಲ್ಟನ್ನ ಶಿಷ್ಯನಾದ ಬರ್ಜೆಲಿಯಸನೂ, ಧಾತುಗಳನ್ನು ಹೆಸರಿಸಿದ ಮತ್ತು ಅವುಗಳ ಹೆಸರಿನ ಮೂಲಾಕ್ಷರದಿಂದ ಧಾತುಗಳನ್ನು ಸಾಂಕೇತಿಕವಾಗಿ ಬರೆಯುವ ಕಲೆ ರೂಢಿಸಿದನು . ಇದರಿಂದ ಸಂಯುಕ್ತ ವಸ್ತುಗಳನ್ನು ಸಾಂಕೇತಿಕವಾಗಿ ಅಣು ಸೂತ್ರದ ರೂಪದಲ್ಲಿ ಬರೆಯಲು ಅನುಕೂಲವಾಯಿತು.
೧೮೨೮ರಲ್ಲಿ ವೋಹ್ಲರನು ಮೊದಲಬಾರಿಗೆ ನಿರಯವ ರಾಸಾಯನಗಳನ್ನು ಬಳಸಿ, ಜೀವಿಗಳಲ್ಲಿ ಕಂಡುಬರುವ ಯೂರಿಯಾ ಎನ್ನುವ ಸಾವಯವ ಪದಾರ್ಥವನ್ನು ತಯ್ಯಾರಿಸಿದನು.
೧೮೩೦ರ ವರೆಗೆ ಕಂಡುಹಿಡಿದ ಧಾತುಗಳ ಸಂಖ್ಯೆ ೫೪ಕ್ಕೆ ಏರಿತು.
೧೮೩೪ರಲ್ಲಿ ಮೈಕಲ್ ಫ್ಯಾರಡೆಯವರ ನಿರೂಪಣೆ ; "ಅಯಾನಿಕ್ ದ್ರಾವಣಗಳಲ್ಲಿ ವಿದ್ಯುತ್ ಹರಿಸಿದಾಗ ಉಂಟಾಗುವ ರಾಸಾಯನಿಕ ಬದಲಾವಣೆಯು, ದ್ರಾವಣದಲ್ಲಿ ಹರಿಸಿದ ಒಟ್ಟು ವಿದ್ಯುತ್ತಿನ ಮೊತ್ತಕ್ಕೆ ಅನುರೂಪವಾಗಿ ಇರುತ್ತದೆ."
೧೮೪೧ರಲ್ಲಿ ಲಂಡನ್ ಪಟ್ಟಣದಲ್ಲಿ ರಾಸಾಯನ ಶಾಸ್ತ್ರದ ಸಂಘ ಸ್ಥಾಪನೆಗೊಂಡಿತು.
೧೮೫೨ರಲ್ಲಿ ರಾಸಾಯನಿಕ ಸಂಯೋಗ ಸಾಮರ್ತ್ಯಯ ನಿರೂಪಣೆಯಾಯಿತು.
೧೮೫೯ರಲ್ಲಿ ಬನ್ಸೆನ್ ರೂ, ಪ್ರತಿಯೊಂದು ಧಾತುವು ತನ್ನದೇ ಆದ, ವಿಶಿಷ್ಟ ಬೆಳಕಿನ ವರ್ಣಪಟಲವನ್ನು ಉಂಟುಮಾಡುತ್ತದೆ ಎಂದು ಕಂಡುಹಿಡಿದರು. ಈ ವಿಧಾನವು ಹೊಸ ಧಾತುಗಳನ್ನು ಕಾಡುಹಿಡಿಯಲು ಅನುಕೂಲವಾಯಿತು.
೧೮೬೦ರಲ್ಲಿ ವಿಜ್ಞಾನಿ ಕೆಕೂಲೆಯವರ ನೇತ್ರಿತ್ವದಲ್ಲಿ , ಜರ್ಮನಿ ದೇಶದಲ್ಲಿ ಮೊದಲಬಾರಿಗೆ ಜಾಗತಿಕ ರಸಾಯನ ಶಾಸ್ತ್ರದ ಸಮ್ಮೇಳನ ಏರ್ಪಟ್ಟಿತ್ತು. ಇದರಲ್ಲಿ ೧೪೦ ಜನ ವಿಜ್ಞಾನಿಗಳು ಪಾಲ್ಗೊಂಡರು.
೧೮೬೯ರಲ್ಲಿ ಸೈಬೀರಿಯಾದ ವಿಜ್ಞಾನಿ ಮೆಂಡೆಲಿವರು ಧಾತುಗಳ ಆವರ್ತಕ ಕೋಷ್ಟಕವನ್ನು ಪ್ರಕಟಿಸಿದರು. ಅವರು ಅಲ್ಲಿಯವರೆಗೆ ತಿಳಿದಿರುವ ೬೬ ಧಾತುಗಳನ್ನು ಕೋಷ್ಟಕದಲ್ಲಿ ಅಡ್ಡಸಾಲು ಹಾಗು ಕಂಬಸಾಲುಗಳಾಗಿ ವರ್ಗಿಕರಿಸಿದರು. ಧಾತುಗಳನ್ನು ಅವುಗಳ ಪರಮಾಣು ರಾಶಿಯ ಏರಿಕೆಯ ಕ್ರಮದಲ್ಲಿ ಬರೆದರು.
೧೮೮೭ರಲ್ಲಿ ಆಮ್ಲ, ಪ್ರತ್ಯಾಮ್ಲ, ಮತ್ತು ಲವಣಗಳು ನೀರಿನಲ್ಲಿ ಕರಗಿ ಅಯಾನ್ಗಳಾಗಿ ಬೇರ್ಪಡುತ್ತವೆ ಎಂದು ಕಂಡುಕೊಂಡರು.
೧೮೯೮ರಲ್ಲಿ ವಿಲಿಯಂ ರಾಮಸೇ ಎನ್ನುವ ವಿಜ್ಞಾನಿ, ಜಡ ಅನಿಲಗಳನ್ನು ಕಂಡುಹಿಡಿದರು.
೧೯೦೦ರ ಹೊತ್ತಿಗೆ ಧಾತುಗಳ ಸಂಖ್ಯೆ ೮೮ಕ್ಕೆ ತಲುಪಿತು.
೧೮೯೭ರಲ್ಲಿ ಜೆ ಜೆ ಥಾಮ್ಸನ್ನರು ಕ್ಯಾಥೋಡ್ ಕಿರಣಗಳ ಪ್ರಯೋಗ ಮಾಡಿ, ಎಲ್ಲಾಧಾತುಗಳ ಪರಮಾಣುಗಳು ಎಲೆಕ್ಟ್ರಾನ್ ಗಳೆಂಬ ಉಪಕಣಗಳು ಹೊಂದಿವೆ ಎಂದು ವಿವರಿಸಿದರು. ಎಲೆಕ್ಟ್ರಾನ್ ಗಳು ಋಣ ವಿದ್ಯುತ್ ಆವೇಶ ಹೊಂದಿರುತ್ತವೆ.
೧೯೧೧ರ ಹೊತ್ತಿಗೆ ಪರಮಾಣುವೂ ಋಣ ವಿದ್ಯುತ್ ಆವೇಶಯುಳ್ಳ ಎಲೆಕ್ಟ್ರಾನ್ ಮತ್ತು ಧನ ಆವೇಶಯುಳ್ಳ ಬೀಜಕೇಂದ್ರ ಹೊಂದಿದೆ ಎಂದು ರದರಫೋರ್ಡರ ಪ್ರಯೋಗಗಳಿಂದ ಖಚಿತವಾಯಿತು. ಮೂಲತಃ ಪರಮಾಣುವಿನ ರಾಶಿಯು ಬೀಜಕೇಂದ್ರದ್ದೇ ಆಗಿದೆ. ಎಲೆಕ್ಟ್ರಾನಿನ ರಾಶಿಯು ನಗಣ್ಯ .
೧೯೧೩ರಲ್ಲಿ ಡೆನ್ಮಾರ್ಕಿನ ವಿಜ್ಞಾನಿ ನೀಲ್ಸ ಬೊಹರರು, ಹೈಡ್ರೋಜನ್ ಪರಮಾಣುವಿನ ರಚನಾ ಸಿಧಾಂತವನ್ನು ಎಸೆಸ್ವಿಯಾಗಿ ವಿವರಿಸಿದರು. ಪರಮಾಣುವಿನ ಬೀಜಕೇಂದ್ರದ ಸುತ್ತ ಎಲೆಕ್ಟ್ರಾನ್ ನಿರ್ಧಾರಿತ ಶಕ್ತಿ ಕವಚದಲ್ಲಿ ಮಾತ್ರ ಸುತ್ತುತ್ತಿರುತ್ತದೆ. ಪರಮಾಣುವಿನ ಹೆಚ್ಚಿನ ಗಾತ್ರ ಎಲೆಕ್ಟ್ರಾನುಗಳೇ ಆಕ್ರಮಿಸಿಕೊಂಡಿರುತ್ತವೆ.
೧೯೧೪ರಲ್ಲಿ ಆಂಗ್ಲ ವಿಜ್ಞಾನಿ ಹೆನ್ರಿ ಮೊಸೆಲಿಯವರಿಂದ ಪರಮಾಣು ಸಂಖ್ಯೆಯ ವ್ಯಾಖ್ಯಾನ ನೀಡಲಾಯಿತು. ಪರಮಾಣು ಸಂಖ್ಯೆಯು ಪರಮಾಣು ಬೀಜ ಹೊಂದಿರುವ ಒಟ್ಟು ಪ್ರೋಟಾನ್ ಗಳ ಸಂಖ್ಯೆಗೆ ಸಮ ಇರುತ್ತದೆ. ಇದಾದನಂತರ ಧಾತುಗಳ ಆವರ್ತಕ ಕೋಷ್ಟಕವನ್ನು ಧಾತುಗಳ ಪರಮಾಣು ಸಂಖ್ಯೆ ಬಳಸಿ ಕೋಷ್ಠಕದ ನ್ಯೂನತೆಗಳನ್ನು ತಿದ್ದಲಾಯಿತು. ಆಧುನಿಕ ಆವರ್ತಕ ಕೋಷ್ಟಕದಲ್ಲಿ ೧೮ ಕಂಭ ಸಾಲುಗಳಿವೆ.
೧೯೧೬ರಲ್ಲಿ ಜ್ಯೂಲಿಯಸರಿಂದ, ಅಯಾನಿಕ್ ಸಂಯುಕ್ತಗಳ ರಚನೆಯಲ್ಲಿ, ಪರಮಾಣುಗಳ ಅಷ್ಟಕ ನಿಯಮ ನಿರೂಪಣೆ.
೧೯೧೬ರಲ್ಲಿ ಅಮೆರಿಕೆಯ ವಿಜ್ಞಾನಿ ಜಿ. ಎನ್. ಲೆವಿಸರು, ರಾಸಾಯನಿಕ ಸಹವೇಲೆನ್ಸಿ ಬಂಧದ ನಿರೂಪಣೆ ಕೊಟ್ಟರು. ಲೆವಿಸರು ಸಹವಾಲೆನ್ಸಿ ಬಂಧ ಬಳಸಿ, ಸಂಯುಕ್ತ ಕಣಗಳ ಅಣುರಚನೆಯನ್ನು ಎಸೆಸ್ವಿಯಾಗಿ ವಿವರಿಸಿದರು.
ಅವರು, ೧೯೨೩ರಲ್ಲಿ ಲೆವಿಸ್ ಆಮ್ಲ ಮತ್ತು ಪ್ರತ್ಯಾಮ್ಲಗಳ ಪರಿಕಲ್ಪನೆ ಕೊಟ್ಟರು. ರಾಸಾಯನಿಕ ಬದಲಾವಣೆಯಲ್ಲಿ, ಲೆವಿಸ್ ಆಮ್ಲಗಳು, ಇಲೆಕ್ಟ್ರಾನ್ ಜೋಡಿಯನ್ನು [ಪ್ರತ್ಯಾಮ್ಲಗಳಿಂದ] ಸ್ವೀಕರಿಸುತ್ತವೆ.
೧೯೧೯ರಲ್ಲಿ ರದರ್ಫೋರ್ಡರು, ಪರಮಾಣು ಬೀಜಕೇಂದ್ರದಲ್ಲಿರುವ ಧನಾವೇಶಯುಳ್ಳ ಪ್ರೋಟಾನ್ ಕಣವನ್ನು ಕಂಡುಹಿಡಿದರು.
೧೯೨೪ರಲ್ಲಿ ಬ್ರೊಗ್ಲೆಯವರಿಂದ ಎಲೆಕ್ಟ್ರಾನಿನ ರಚನಾ ರೂಪ, ಅಲೆ ಹಾಗೂ ಕಣ ಎನ್ನುವ ದ್ವಿಗುಣ ಪ್ರಕೃತಿಯ ನಿರೂಪಣೆ.
೧೯೨೬ರಲ್ಲಿ ಶ್ರೋಡಿಂಗರರಿಂದ ಪರಮಾಣುವಿನ ರಚನೆಯ ಶಕಲಸಿಧಾಂತದ ನಿರೂಪಣೆ.
೧೯೩೨ರಲ್ಲಿ ಜೇಮ್ಸ್ ಚಾಡ್ವಿಕ್ ರವರು, ಪರಮಾಣು ಬೀಜಕೇಂದ್ರ ಹೊಂದಿರುವ ನ್ಯೂಟ್ರಾನ್ ಎನ್ನುವ ಉಪಕಣವನ್ನು ಕಂಡುಹಿಡಿದರು. ಈ ಕಣಕ್ಕೆ ಯಾವುದೇ ವಿದ್ಯುತ್ ಆವೇಷ ಇಲ್ಲ. ಹೀಗೆ ಒಂದು ಪರಮಾಣುವೂ ಎಲೆಕ್ಟ್ರಾನ್, ಪ್ರೋಟಾನ್, ಮತ್ತು ನ್ಯೂಟ್ರಾನ್ ಎನ್ನುವ ಸೂಕ್ಷ್ಮ ಕಣಗಳಿಂದ ಆಗಿದೆ. ಪ್ರೋಟಾನ್ ಅಥವಾ ನ್ಯೂಟ್ರಾನ್ ಕಣದ ರಾಶಿಗೆ ಹೋಲಿಸಿದರೆ ಎಲೆಕ್ಟ್ರಾನ್ ರಾಶಿಯು ನಗಣ್ಯ ಎನಿಸುತ್ತದೆ. ಆದರೆ ಎಲೆಕ್ಟ್ರಾನ್ ಮತ್ತು ಪ್ರೋಟಾನ್ ಗಳ ವಿದ್ಯುತ್ ಆವೇಶವು ಸಮ ಇರುತ್ತದೆ. ಒಂದು ಪರಮಾಣುವಿನ ಎಲೆಕ್ಟ್ರಾನ್ ಮತ್ತು ಪ್ರೋಟಾನ್ ಗಳ ಸಂಖ್ಯೆ ಸಮಾನವಾಗಿರುತ್ತದೆ.
Sunday, 23 May 2021
Hindu Calendar
Throughout most of history, most calendars were based on the moon and each waxing and waning of the moon would count as one month. One example of this is the Muslim Hijri calendar, which takes 12 lunar months. However, 12 lunar months are only 354 days, which is 11 days shorter than a solar year. This creates a problem because if people use a purely lunar calendar, the months in which spring, summer or winter occur will change from year to year (as the seasons depend on the earth’s movement around the sun). In fact, every few years, summer would occur in December!
The Hindu calendar is known as a lunisolar calendar. The 12 months move according to the moon and the year is 354 days long. However, every third year, 33 days (11 extra days * 3) are added by creating one extra lunar month of 29 days. The remaining four days are adjusted here and there.
The 12 Indian months are: Chaitra, Vaisakha, Jyeshtha, Ashadha, Shravana, Bhadra, Ashvin, Kartik, Agahana, Pausha, Magha, Phalguna. So every three years, one of these months occurs twice in the same year…it’s like having two Marches or two Julys in a year!
There are two main calendars in common use in India today, the Vikram Samvat with a zero point of 57 BC and the Shaka Samvat with a zero point of 78 AD. They are used for calculating the dates of all Hindu festivals like Diwali and Holi.
Hindu calendar, dating system used in India from about 1000 BCE and still used to establish dates of the Hindu religious year. It is based on a year of 12 lunar months; i.e., 12 full cycles of phases of the Moon. The discrepancy between the lunar year of about 354 days and the solar year of about 365 days is partially resolved by intercalation of an extra month every 30 months.
The Saka Calender is based on luni-solar reckoning of time. The calendar consists of 365 days and 12 months like the normal Gregorian calendar. Chaitra is the first month of the year beginning on March 22 which is the day after the Spring Equinox. During leap years, the starting day of Chaitra corresponds with March 21. To convert years in AD to Saka years, 78 must be subtracted for a date.
The names of the months in Saka Calendar are:
• Chhaitra (March 21 – April 20)
• Vaishakha (April 21-May 21)
• Jyeshtha (May 22-June 21)
• Ashadha (June 22- July 22)
• Shravana (July 23-August 22)
• Bhaadra (August 22-September 22)
• Ashwin (September 23-October 22)
• Kartika (October 23-November 21)
• Agrahayana (November 22-December 21)
• Pausha (December 22-January 20)
• Magha (January 21- February 19) and
• Phalguna (February 20-March 20/21)
The month of Chaitra has generally 30 days but there are 31 days during leap years. The months of Vaish?kha, Jy?shtha, ?sh?dha, Shr?vana, Bhaadra, have 31 days while the rest have 30 days. This is done by taking into account the ellipticity of earth’s orbit around the sun.
Computation and calculation of time was a hallmark of all ancient civilizations. Egyptian and Mesopotamian civilization had their abiding interest in chronology and astronomy. The oldest and the largest civilization, the Indus valley civilization, was by far the most advanced and sophisticated in terms of chronological and astronomical acumen. They even had professional astronomers, called ‘nakshatra darshaks’ or ‘star gazers’, who meticulously observed and recorded the phases of the moon in reference to fixed constellations of stars. This method of calculation and its precision, sharply distinguishes Indian astronomy from the astronomy of all other countries.
The Indian calendar is ingeniously based on both the sun as well as the moon. It uses a solar year, but divides it into 12 lunar months. A lunar month, is the time required for the moon to orbit once around the earth and pass through its complete cycle of phases. Furthermore, these months are formulated in accordance with the successive entrances of the sun into the 12 rashis or the signs of the zodiac derived from the 12 constellations marking the path of the sun.
Vedic literature show that the knowledge of chronology (science of Time) and chronometry (scientific measurement of Time) existed even during Vedic times, thousands of years before the Christian era. Knowledge of planetary motions, constellations, eclipses, solstices, seasons, etc. has existed since the beginning of the Vedic age. A method of distributing time into various periods such as days, fortnights, months and years was adopted for the purposes of civic life, these divisions being intimately connected with the affairs of the people. And because of the very fact that the Indian calendar was devised to serve the affairs of day-to-day living, it was allowed the freedom of being both lunar and solar. The Rig Veda, cites months being lunar, but years luni-solar.
This means that there was a constant correlation between the solar year and its monthly lunar divisions. A lunar month is precisely 29 days 12 hours 44 minutes and 3 seconds long. Twelve such months constitute a lunar year of 354 days 8 hours 48 minutes and 36 seconds. To help the lunar months coincide with the solar year, the practice arose of inserting intercalary (extra) months. In general, 60 solar months = 62 lunar months. And so an extra month, called the Adhik Maas (extra month), is inserted every 30 months, approximately every 2½ years. Such a practice was prevalent even in Vedic times. An intercalary month mentioned in the Rig Veda {Vedamãso dhrutavrato dvãdasha prajãvatah; vedã ya upajãyate. (I/25:8)} proves that the month was added to preserve the correspondence between a whole solar year and the 12 lunations.
Seasons within the Hindu calendar
It is even more interesting, how the solar year was classified on the basis of seasons. The 12 lunar months of a solar year are divided into six ritus (seasons), each comprising of approximately two months. Since the seasons are solar based, each of the six seasons — Sharad (late monsoon), Hemant (early winter), Shishir (winter), Vasant (spring), Grishma (summer) and Varsha (monsoon)- commence around the 21st date (±2) of each even month of the Western calendar.
The Hindu calendar recognizes the importance of the summer solstice and winter solstice in a solar year, determining the six seasons. The Dakshinayana or the sun’s southern course starts from June 21 till December 21, during which the day-length is successively getting shorter until it is the shortest in december. The Uttarayana or the sun’s northern course progresses from December 21 until June 21, during which the day-length gets successively longer until it is the longest in June. Sun reaches the equinox twice in a year, during which the length of day and night are equal. The first point is Vernal Equinox in March 20(Vasant Sampaat). The other point is called Autumnal Equinox in September 22(Sharad Sampaat).Monday, 19 April 2021
Ancient India
About three lakh years ago, homosepians appeared in African plains.
200000 BCE- Probable birth of Humans evolved on the planet Earth. Monkey to man.
80,000 BCE- Humans appeared in this part of the earth, Jumbo Dveepa [Indin sub-continent].
74000 years ago, a volcanic eruption in Indonesia, destroyed life in the central and southern regions of India. Very few survived this carbon smoke eruption.
14,500 BCE- Brahma lived in India, Birth of Manu.
14500-11500 BCE Proto Indic language developed.
13500 BCE- The sage Viswamitra’s period.
11500- 3000 BCE Early Brahmi script evolved.
11200 BCE- Enormous earthquake in Kashmir Lake and flooding in the western part of India.
10000 BCE- The star, Agastya was visible at the south pole from Kanyakumari, the southern tip of India.
11200 BCE -10200 BCE- Rigveda was written during this time span.
9000 BCE- Atharvana Veda was written during this period.
7000- 3000 BCE Indus script was developed.
6778 BCE- Surya Siddhanta was written by Mayasura.
6777-5577 - Tretayuga period [1200 years].
5677-5577 BCE- The period of Ramayana.
5674 BCE- Birth of Shri Rama.[3rd February 5674 BCE]
5635 BCE- Ravana was killed by Rama.[in a war].
5577- 3177 BCE- Dwapara yuga. [2400 years].
3162 BCE- The period of Mahabharatha.
3102 BCE- Start of Kaliyuga time.
18th February 3192 BCE- Start of Kaliyuga.
2982 BCE- SaamaVeda and Yajurveda were written.
2000-1900 BCE- River Saraswathi dried up. There was a widespread drought all over the Indian subcontinent. And migration started to the outside world from India.
3000-2500 BCE- Indus Script refinement.
2500-1300 BCE- Ashokan or Mauryan Brahmi scipt.
2000- 0 BCE-Dialects of local languages were developed.
1864 BCE- Budha attained Nirvana.
1662 BCE-Mahapadma Nanda’s period.
1596- 1459- Mauryas period.
1500 BCE-Brahmi script evolved.
1400 BCE- six Vedangas were written.
1250BCE - 600 CE-Kushana Brahmi.
1200 BCE- Vedanga Jotisha
0719 BCE- Karttikadi Vikrama Era.
0057 CE- Chitradi Vikram Era.
0700BCE- Surya Siddhantha was re-written.
583 BCE- Saka Era
78 CE -Sakanta Era
0509 BCE- Adi Shankaracharya’s period.
[Indian textbook errors-1380 years].
540 BCE-Tamil Brahmi script evolved in Palani.
0600 BCE- Kanaadha’s theory of matter[Atom].
0570-495 BCE- Pythagoras time. His Indian connection.
0300-400CE Devanagari Script evolved.
499 ACE- Aryabhata-I. A great mathematician and scientist.
598 ACE- Brahmagupta.
600 ACE- Bhaskara-I
950 ACE-Aryabhata-II
Indian time scale:
8000 years- Satya yuga [from 14500 to 6777 BCE] Vedic period.
1200 years -Treta yuga [6777 to 5577 BCE]
2400 years- Dwapara yuga [5577 to 3102 BCE]
Astronomy
Precession duration: 25700 years cycle.