Friday 9 June 2017

Iron and steel industry

Certain metals, notably tin, lead and (at a higher temperature) copper, can be recovered from their ores by simply heating the rocks in a fire or blast furnace, a process known as smelting.  It was discovered that by combining copper and tin, a superior metal could be made,  an alloy called bronze 

The extraction of iron from its ore into a workable metal is much more difficult than for copper or tin.  In order to convert a metal oxide or sulphide to a purer metal, the ore must       be reduced physically, chemically, or electrolytically 

 After mining, large pieces of the ore feed are broken through crushing and/or grinding in order to obtain particles small enough where each particle is either mostly valuable or mostly waste. Concentrating the particles of value in a form supporting separation enables the desired metal to be removed from waste products.  A concentrate may contain more than one valuable metal. That concentrate would then be processed to separate the valuable metals into individual constituents. 

 Leaching dissolves minerals in an ore body and results in an enriched solution. The solution is collected and processed to extract valuable metals.  

The Bessemer process was the first inexpensive industrial process for the mass production of steel from molten pig iron before the development of the open hearth furnace. The key principle is removal of impurities from the iron by oxidation with air being blown through the molten iron. The oxidation also raises the temperature of the iron mass and keeps it molten. 

The blowing of air through the molten pig iron introduces oxygen into the melt which results in oxidation, removing impurities found in the pig iron, such as silicon, manganese, and carbon in the form of oxides. These oxides either escape as gas or form a solid slag 

The Bessemer process revolutionized steel manufacture by decreasing its cost, from £40 per long ton to £6–7 per long ton, along with greatly increasing the scale and speed of production of this vital raw material. The process also decreased the labor requirements for steel-making. Before it was introduced, steel was far too expensive to make bridges or the framework for buildings and thus wrought iron had been used throughout the Industrial Revolution. After the introduction of the Bessemer process, steel and wrought iron became similarly priced, and some users, primarily railroads, turned to steel. 

     Iron extraction 

 A process known as potting and stamping was devised in the 1760s and improved in the 1770s, and seems to have been widely adopted in the West Midlands from about 1785. However, this was largely replaced by Henry Cort's puddling process, patented in 1784, but probably only made to work with grey pig iron in about 1790. These processes permitted the great expansion in the production of iron that constitutes the Industrial Revolution for the iron industry.[65] 


In the early 19th century, Hall discovered that the addition of iron oxide to the charge of the puddling furnace caused a violent reaction, in which the pig iron was decarburised, this became known as 'wet puddling'. It was also found possible to produce steel by stopping the puddling process before decarburisation was complete. 


The efficiency of the blast furnace was improved by the change to hot blast, patented by James Beaumont Neilson in Scotland in 1828. This further reduced production costs. Within a few decades, the practice was to have a 'stove' as large as the furnace next to it into which the waste gas (containing CO) from the furnace was directed and burnt. The resultant heat was used to preheat the air blown into the furnace.[66 
The problem of mass-producing cheap steel was solved in 1855 by Henry Bessemer, with the introduction of the Bessemer converter at his steelworks in Sheffield, England. (An early converter can still be seen at the city's Kelham Island Museum). In the Bessemer process, molten pig iron from the blast furnace was charged into a large crucible, and then air was blown through the molten iron from below, igniting the dissolved carbon from the coke. As the carbon burned off, the melting point of the mixture increased, but the heat from the burning carbon provided the extra energy needed to keep the mixture molten. After the carbon content in the melt had dropped to the desired level, the air draft was cut off: a typical Bessemer converter could convert a 25-ton batch of pig iron to steel in half an hour. 


Finally, the basic oxygen process was introduced at the Voest-Alpine works in 1952; a modification of the basic Bessemer process, it lances oxygen from above the steel (instead of bubbling air from below), reducing the amount of nitrogen uptake into the steel. The basic oxygen process is used in all modern steelworks; the last Bessemer converter in the U.S. was retired in 1968. Furthermore, the last three decades have seen a massive increase in the mini-mill business, where scrap steel only is melted with an electric arc furnace. These mills only produced bar products at first, but have since expanded into flat and heavy products, once the exclusive domain of the integrated steelworks. 

  Basic oxygen steelmaking (BOSBOPBOF, and OSM), also known as Linz–Donawitz-steelmaking or the oxygen converter process[1]is a method of primary steelmaking in which carbon-rich molten pig iron is made into steel. Blowing oxygen through molten pig iron lowers the carbon content of the alloy and changes it into low-carbon steel. The process is known as basic because fluxes of burnt lime or dolomite, which are chemical bases, are added to promote the removal of impurities and protect the lining of the converter.[2]

No comments:

Post a Comment